Том 332 № 10 (2021)
DOI https://doi.org/10.18799/24131830/2021/10/3401
ПРИМЕНЕНИЕ МАШИННОГО ОБУЧЕНИЯ ДЛЯ ПРОГНОЗИРОВАНИЯ ПЛАСТОВОГО ДАВЛЕНИЯ ПРИ РАЗРАБОТКЕ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ
Ссылка для цитирования: Применение машинного обучения для прогнозирования пластового давления при разработке нефтяных месторождений / Д.А. Мартюшев, И.Н. Пономарева, Л.А. Захаров, Т.А. Шадров // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2021. – Т. 332. – № 10. – С. 140–149.
Актуальность исследования обусловлена тем, что появление искусственного интеллекта в нефтяной промышленности привело к увеличению его использования при разведке, разработке, добыче, проектировании месторождений и планировании управления, чтобы ускорить принятие решений, сократить затраты и время. Машинное обучение приобрело большую популярность в установлении взаимосвязи между сложными нелинейными наборами данных и продемонстрировало свое превосходство над методами регрессии в нефтяной инженерии с точки зрения ошибок прогнозирования данных большой размерности, вычислительной мощности и памяти. В представленной статье рассматривается применение машинного обучения для оценки его эффективности и потенциала для определения и прогнозирования значений пластового давления при разработке нефтяных месторождений по сравнению с обычными статистическими моделями нефтегазовой инженерии. Цель: оценка возможностей расчета и прогнозирования пластового давления методом машинного обучения «случайный лес». Объект: динамика пластового давления при разработке терригенных отложений нефтяных месторождений Пермского края. Методы: методы вероятностно-статистического анализа и машинного обучения «random forest regression» («случайный регрессионный лес»). Результаты. Предлагается новый метод прогнозирования пластового давления с использованием машинного обучения, основанный на непараметрической многомерной модели, связывающей показатели эксплуатации скважины во времени. Предлагаемый метод учитывает динамику показателей, характеризующих эксплуатацию скважин, а прогнозируемое пластовое давление хорошо коррелируется с измеренными с помощью гидродинамических исследований скважин значениями. Установлено, что метод машинного обучения «случайный лес» обеспечивает лучшую достоверность прогнозирования пластового давления, чем метод линейной регрессии. Перспективами дальнейшего развития является дополнительное «обучение» модели «случайного леса» и оценка возможности применения других методов машинного обучения для решения поставленной задачи, в том числе расширение набора факторов для более точного моделирования пластового давления.
Ключевые слова:
Искусственный интеллект, машинное обучение, многомерная модель, случайный лес, показатели эксплуатации скважин, текущее пластовое давление, корреляция