Том 327 № 1 (2016)
Использование различных вычислительных систем для решения задачи автоматической классификации облачности по спутниковым данным MODIS на основе вероятностной нейронной сети
Актуальность исследования обусловлена необходимостью разработки алгоритмов и программных средств для классификации типов облачности по спутниковым снимкам однослойной облачности, полученных с помощью спектрорадиометра MODIS, используемого аппаратами дистанционного зондирования Земли Terra и Aqua, и высокопроизводительных систем. Цель работы: эффективный и быстрый анализ спутниковых снимков размерами 5416?8120 пикселей однослойной облачности, полученных с помощью спектрорадиометра MODIS с помощью вероятностной нейронной сети, для классификации облачности по 27 типам. Методы исследования. Для достижения цели применяются методы распараллеливания вычислений, нейросетевые вычисления, методы компьютерного зрения и анализа текстур, алгоритмы классификации, технологии высокопроизводительных вычислений для многоядерных систем с общей памятью (OpenMP), графических процессоров (CUDA) и распределенных систем (MPI). Результаты. Процедура классификации, основанная на вероятностной нейросетевой модели, сравнивает фрагменты снимка с эталонами, полученными ранее и классифицированными экспертами. Для корректного анализа фрагмента изображения его требуется сравнить с тысячами эталонов, что приводит к существенным временным затратам. Характер вычислений позволяет разбить входной снимок на несколько более мелких и обработать их независимо на разных вычислительных устройствах или устройствах, поддерживающих одновременное выполнение разных задач. В работе сравнивается производительность трех подходов к распараллеливанию вычислений: на основе многопоточных вычислений, выполняемых многоядерными центральными процессорами, многопоточных вычислений внутри мультипроцессоров графических ускорителей и распределенной обработки на базе кластера. Для последнего случая, в котором вычислительные задачи разделяются уже не между потоками, а процессами с индивидуальными адресными пространствами, было предложено два подхода к решению проблемы: на основе разделения задач и разделения данных. Для каждого варианта параллельной обработки приведены детальное описание и оценка его производительности при анализе полноразмерного снимка MODIS. Показано, что использование распределенной обработки и/или графических ускорителей при решении задачи классификации однослойной облачности, основанной на вероятностной нейронной сети, имеет существенное преимущество по производительности не только по сравнению с классическим алгоритмом, но и его модификацией для многоядерных центральных процессоров.
Ключевые слова:
классификации, облачность, параллельные вычисления, спутниковые данные, MODIS, обработка данных, суперкомпьютеры, графические процессоры, нейронные сети