Том 324 № 5 (2014): Информационные технологии

Применение сверточных нейронных сетей для выделения и распознавания автомобильных номерных знаков на изображениях со сложным фоном

Актуальность исследования обусловлена необходимостью разработки методов, алгоритмов и программ, обеспечивающих повышение эффективности распознавания автомобильных номерных знаков на изображениях со сложным фоном. Цель работы: повышение эффективности распознавания автомобильных номерных знаков на изображениях со сложным фоном за счёт создания методов, алгоритмов и программ, инвариантных к смещениям, поворотам, смене ракурса и прочим искажениям входных данных. Методы исследования: для решения поставленных задач использованы методы искусственного интеллекта, идентификации и распознавания образов на изображениях, теории искусственных нейронных сетей, сверточные нейронные сети, эволюционные алгоритмы, математическое моделирование, теория вероятности и математическая статистика с использованием программного обеспечения Visual Studio и MatLab. Результаты: разработана программная система, позволяющая распознавать автомобильные номерные знаки на изображениях со сложным фоном. Для выделения области расположения символов на изображении предложена сверточная нейронная сеть, состоящая из 7 слоев. Для выделения отдельных символов используется алгоритм, основанный на гистограммах средней интенсивности пикселей. Для распознавания символов реализована сверточная нейронная сеть, состоящая из 6 слоев. Представленная программная система позволяет распознавать автомобильные номерные знаки под большими углами наклона по вертикали, горизонтали и на плоскости при достаточно высоком быстродействии.

Ключевые слова:

изображения, обработка, искусственный интеллект, символы, распознавание, нейронные сети, гистограммы

Авторы:

Алексей Алексеевич Друки

Скачать bulletin_tpu-2014-324-5-10.pdf