Том 324 № 2 (2014): Математика и механика. Физика
Асимптотика решения бисингулярно возмущенного эллиптического уравнения. Случай особой точки на границе
При математическом моделировании процессов конвективно-диффузионного переноса, химической кинетики и др. возникают краевые задачи для уравнений эллиптического типа второго порядка с малым параметром при старших производных. Явное решение этих задач построить в общем случае не удается, поэтому используют разные асимптотические методы. Основополагающими в этом направлении являются работы А.Н. Тихонова, А.Б. Васильевой, С.А. Ломова, В.Б. Бутузова, Л.И. Люстерника, М.И. Вишика, A.M. Ильина. В случае, когда соответствующее невозмущенное уравнение имеет негладкое решение, эти задачи, по терминологии A.M. Ильина, называют бисингулярными. Ранее для построения асимптотики бисингулярно возмущенных задач применялся метод сращивания, а метод пограничных функций не использовался напрямую. В работе предложена модификация метода пограничных функций, благодаря которой стало возможным построить асимптотику решения бисингулярно возмущенного эллиптического уравнения. Целью исследования является развитие асимптотического метода пограничных функций для бисингулярно возмущенных задач. Применяя обобщенный метод пограничных функций, построено асимптотическое разложение решения бисингулярно возмущенного эллиптического уравнения в случае, когда предельное уравнение имеет особенность на граничных точках области. Задача рассматривается в круге.
Ключевые слова:
асимптотика, бисингулярное возмущение, эллиптическое уравнение, особая точка, задача Дирихле, малый параметр, уравнения Эйри, функция Эйри