УДК 519.688:622.276.5.001.42

АДАПТИВНАЯ ИНТЕРПРЕТАЦИЯ НЕСТАЦИОНАРНЫХ ГИДРОДИНАМИЧЕСКИХ ИССЛЕДОВАНИЙ В СИСТЕМЕ «ПЛАСТ-СКВАЖИНА» МЕТОДОМ ИНТЕГРИРОВАННЫХ МОДЕЛЕЙ

К.С. Гаврилов, В.Л. Сергеев

Томский политехнический университет E-mail: SergeevVL@ignd.tpu.ru

Рассматриваются проблемы повышения информативности методов интерпретации нестационарных гидродинамических исследований в системе «пласт-скважина», и предлагается подход к их решению, основанный на использовании метода интеррированных моделей и метода адаптивной интерпретации. Приводятся примеры, показывающие преимущества предлагаемого подхода.

Ключевые слова:

Интерпретация, идентификация, гидродинамические исследования скважин, априорная информация, нефтяные пласты. *Key words:*

Interpretation, identification, hydrodynamic analysis of oil wells, a-priori information, oil pools.

Введение

Нестационарные гидродинамические исследования скважин (ГДИС) являются наиболее информативным методом определения коллекторских и геометрических параметров пластов нефтяных и газовых месторождений. Они обеспечивают получение важнейших параметров залежей, на основании которых осуществляются процессы добычи нефти, составляются технологические проекты разработки месторождений, создаются геолого-технологические модели процессов нефтегазодобычи.

Существенным недостатком традиционных методов идентификации и интерпретации ГДИС является их затратный характер, поскольку интерпретация результатов производится после завершения заранее спланированных исследований, что часто приводит к продолжительным простоям скважин, значительной потере добычи углеводородов [1].

Однако в настоящее время, в связи с возможностью получения информации в режиме реального времени стационарными измерительными системами, требуется иная технология, позволяющая определять фильтрационные параметры и энергетическое состояние залежей в процессе гидродинамических исследований, не планируя заранее время их завершения [2].

С другой стороны, для повышения информативности, обеспечения устойчивости и повышения точности методов интерпретации ГДИС, как отмечалось рядом авторов, требуется интеграция информации о параметрах пласта и скважины [2–4]. Одним из перспективных способов интеграции информации, зарекомендовавшим себя при решении ряда практических задач мониторинга и управления разработкой нефтяных месторождений, является технология интегрированных моделей, которая позволяет объединить исходные данные, дополнительные априорные сведения, накопленный опыт и знания в единую систему моделей, что обеспечивает устойчивость оценок и существенно повышает их точность. В данной работе на основе метода интегрированных моделей [4] и метода адаптивной идентификации [3] предлагаются и исследуются модели и алгоритмы, позволяющие проводить интерпретацию нестационарных ГДИС в процессе поступления информации, наиболее полно учитывать дополнительные априорные данные и экспертные оценки о параметрах пласта и скважины

Технология адаптивной интерпретации гидродинамического исследования скважин в системе «пласт-скважина»

Основой алгоритмов адаптивной интерпретации нестационарных ГДИС в системе «пласт—скважина» является стохастическая интегрированная система моделей вида:

$$\begin{aligned}
& \left\{ \begin{aligned} P_{3,n}^{*} = P_{3}\left(t_{n}, \boldsymbol{\alpha}_{n}, q\right) + \boldsymbol{\xi}_{n}, \\ \overline{P}_{nn} = P_{3}\left(T, \boldsymbol{\alpha}_{n}, q\right) + \boldsymbol{\eta}_{n}, \ \Gamma \overline{\boldsymbol{\alpha}}_{l} = \Gamma \boldsymbol{\alpha}_{n} + \boldsymbol{\nu}_{nl}, l = \overline{1, p}, \\ \overline{V} = V(T, G \boldsymbol{\alpha}_{n}) + \boldsymbol{\varepsilon}_{n}, n = \overline{1, n}_{k}, \end{aligned} \right. \tag{1}$$

где $P_{3,n}^*, P_3(\alpha_n, q_n)$ – векторы фактических значений забойных давлений в текущий момент времени t, и вычисленные на основе модели КВД f_3 , заданной с точностью до параметров $\boldsymbol{\alpha}_n = (\boldsymbol{\alpha}_{1n}, \boldsymbol{\alpha}_{2n}, \boldsymbol{\alpha}_{nm}); V_n$ $V(t_n, G\alpha)$ – экспертная оценка накопленной жидкости в стволе скважины после ее остановки, вычисленная на основе модели $V(T, G\alpha)$; P_{nn} , $\Gamma \overline{\alpha}_{l}$ – векторы дополнительных априорных данных о пластовом давлении и фильтрационных параметрах пласта (полученных из ранее проведенных ГДИС, геофизических исследований скважин, лабораторных исследований керна и т. п.); Г, G – диагональные индикаторные матрицы нулей либо единиц (символ «О» используется для указания отсутствующих элементов векторов параметров $\overline{\alpha}$, α); T – время максимальной длительности исследований скважины, гарантированное для восстановления в скважине пластового давления ($T \approx 3t_n$); ξ_n , η_n , v_{nl} , $\boldsymbol{\varepsilon}_{n}$ — векторы случайных величин, представляющих погрешности измерений забойных давлений, дебита притока продукции в скважине, ошибки дополнительных данных и экспертных оценок, неточность моделей и т. п.

Технологию адаптивной идентификации и интерпретации ГДИС по кривой восстановления давления (КВД), основанную на методе интегрированных моделей, можно представить как процесс принятия решений, содержащий этапы:

 формирование исходных данных, дополнительных априорных сведений, экспертных оценок, выбор модели КВД в рамках системы моделей (1)

$$\{P_{3,n}^{*}, P_{nn}, \boldsymbol{\alpha}_{l}, l = 1, p, V_{n}, P_{3}(\boldsymbol{\alpha}_{n}, q_{n}), n = 1, n_{k}\}; \qquad (2)$$

 выбор показателя качества системы моделей (1) и решение оптимизационных задач вида

$$\boldsymbol{\alpha}_{n}^{*}(\boldsymbol{\beta}_{n}) = \arg\min_{\boldsymbol{\alpha}_{n}} \Phi(\boldsymbol{\alpha}_{n},\boldsymbol{\beta}_{n}), n = 1, n_{k}, \qquad (3)$$

$$\boldsymbol{\beta}_{n}^{*} = \arg\min_{\boldsymbol{\beta}} J_{0}(\boldsymbol{\alpha}_{n}^{*}(\boldsymbol{\beta}_{n})), \qquad (4)$$

где запись arg minf(x) означает точку минимума x^* функции $f(x)(f(x^*)=\min f(x)); \quad \Phi(\alpha_n,\beta_n)==\Phi(J_0(\alpha_n),\beta_k J_k(\alpha_n),k=1,p)$ – комбинированный показатель качества системы моделей КВД (1), представляющий заданную функцию (функционал) Φ от частного показателя качества $J_0(\alpha_n)$ модели КВД и от взвешенных весами β_n частных показателей качества $J_k(\alpha_n)$ моделей дополнительных априорных данных и экспертных оценок;

 анализ точности полученных приближений и принятие решения о прекращении либо о продолжении исследований с возвратом к этапу (2), либо (1).

Решение о прекращении исследований может быть принято на основе визуального анализа графика зависимости оценок параметров пласта и скважины (3) от времени либо по критерию стабилизации полученных приближений, где, например, за момент их завершения n_{κ} принимается то значение *n*, при котором выполняется неравенство

$$\left| (\alpha_{j,(n-i)}^* - \alpha_{jn}^*) / \alpha_{nj}^* \right| \le \varepsilon_j, j = \overline{1,m}, i = 1, 2, 3, ...$$

$$(\varepsilon_j -$$
заданная точность) (5)

Предлагаемая технология (2)–(5) позволяет синтезировать достаточно широкий спектр алгоритмов адаптивной идентификации и интерпретации ГДИС для линейных, нелинейных и непараметрических моделей КВД и моделей объектов аналогов [4].

Отметим, что для нелинейной модели КВД при выборе комбинированного показателя качества в виде суммы частных квадратичных показателей качества

$$\Phi = \left\| P_{3,n}^* - P_3\left(t_n, \boldsymbol{\alpha}_n, q\right) \right\|_{W}^{2} + \beta_1 \left\| \overline{P}_{nn} - P_3\left(T, \boldsymbol{\alpha}, q\right) \right\|^{2} + \beta_2 \left\| \Gamma \overline{\boldsymbol{\alpha}}_l - \Gamma \boldsymbol{\alpha} \right\|^{2} + \beta_3 \left\| \overline{V} - V(T, G \boldsymbol{\alpha}) \right\|^{2}$$
(6)

оптимизационная задача (3) с использованием метода Гаусса-Ньютона сводится к последовательно-

му решению системы линейных алгебраических уравнений

$$\begin{cases} \boldsymbol{\alpha}_{n}^{i} = \boldsymbol{\alpha}_{n}^{i-1} + h_{i,n} \Delta \boldsymbol{\alpha}_{n}^{i-1}, & i = 1, 2, 3, ..., \\ A^{i-1} \cdot \Delta \boldsymbol{\alpha}_{n}^{i-1} = B^{i-1}, \end{cases}$$
(7)

где запись $||X||_{W^2}$ означает квадратичную форму;

$$\begin{aligned} A^{i-1} &= (D_{3}^{T}WD_{3} + \beta_{1}D_{n3}^{T}D_{nn} + \beta_{2}D_{v}^{T}D_{v} + \beta_{2}I)^{i-1}, \\ B^{i-1} &= (D_{3}^{T}W\mathbf{e}_{3} + \beta_{1}D_{n3}^{T}\overline{e}_{nn} + \beta_{2}D_{v}^{T}\overline{e}_{v} + \beta_{3}\Delta\overline{\boldsymbol{\alpha}})^{i-1}, \\ D_{3} &= \left(\frac{\partial P_{s}(t_{i},\boldsymbol{\alpha},q)}{\partial\alpha_{j}}, \ i = \overline{1,n}, j = \overline{1,m}\right), \\ D_{nn} &= \left(\frac{\partial P_{s}(T,\boldsymbol{\alpha})}{\partial\alpha_{j}}, \ j = \overline{1,m}\right), \\ D_{v} &= \left(\frac{\partial V(T,G\boldsymbol{\alpha})}{\partial\alpha_{j}}, \ j = \overline{1,m}\right) \end{aligned}$$

 матрица и векторы частных производных от моделей КВД, пластового давления и накопленной добычи жидкости;

$$\mathbf{e}_{3} = (P_{3}^{*} - P_{3}(\boldsymbol{\alpha})), \ \overline{e}_{nn} = (P_{nn} - P_{3}(T, \boldsymbol{\alpha})),$$
$$\Delta \overline{\boldsymbol{\alpha}} = (\Gamma \overline{\boldsymbol{\alpha}}^{*} - \Gamma \boldsymbol{\alpha}), \ \overline{e}_{v} = (\overline{V}^{*} - V(T, G\boldsymbol{\alpha}))$$

– векторы и переменные невязок; $\overline{P}_{n,n}^*$, \overline{V}^* – усредненные значения дополнительных априорных данных и экспертных оценок пластового давления, фильтрационных параметров пласта и <u>накоплен-</u> ной добычи продукции; W=diag($w(n), n=1, n_k$) – диагональная матрица весовой функции w(t), определяющая вес забойного давления $P_{3,n}^*$ в текущий момент времени t_n ; $\beta_1, \beta_2, \beta_3$ – управляющие параметры. Для получения (7) достаточно взять частные производные по параметрам α_n от комбинированного функционала (6) и приравнять их к нулю.

Следует также отметить, что задача (4) по определению оптимальных значений вектора управляющих параметров β_n^* не имеет аналитического решения и решается методами последовательных приближений.

Результаты идентификации и интерпретации

Результаты идентификации и интерпретации ГДИС скважины № 335 однородно-пористого нефтяного пласта месторождения Тюменской области на неустановившихся режимах фильтрации по КВД приведены на рис. 1-3 и в таблице. В качестве модели КВД использована зависимость $P_3(t)$, позволяющая учитывать приток продукции в скважину после ее остановки [1]:

$$P_{s}(t) = P(t_{0}) + \frac{1}{4\pi\sigma} \int_{t_{0}}^{t} \frac{(q_{0} - q(\tau))}{t - \tau} \exp(-\frac{1}{k_{p}(t - \tau)}) \cdot d\tau, \qquad (8)$$

где q_0 – дебит скважины до ее остановки; $q(\tau)$ – модель дебита притока продукции в скважину после ее остановки: $P_s(t_0)$ – забойное давление в момент остановки скважины t_0 ; σ , $k_p=4\chi/r_{np}^2$ – гидропроводность нефтяного пласта и комплексный параметр; r_{np} , χ — приведенный радиус скважины и пъезопроводность пласта.

На рис. 1 приведены значения забойного давления $P_{3,n}^*$, ат, и дебита притока продукции в скважине q_n , M^3 /сут.

Рис. 1. Значения забойного давления (1) и дебита притока (2)

Обработка результатов ГДИС проводилась с использованием программных комплексов PanSystem, Saphir, адаптивного метода интегрированных моделей (7), адаптивного метода наилучшего совмещения, который, по аналогии с (7), сводится к последовательному решению системы линейных уравнений вида

$$\begin{cases} \boldsymbol{\alpha}_{n}^{i} = \boldsymbol{\alpha}_{n}^{i-1} + h_{i,n} \Delta \boldsymbol{\alpha}_{n}^{i-1}, & i = 1, 2, 3, ..., \\ (D_{s}^{T} W D_{s})^{i-1} \cdot \Delta \boldsymbol{\alpha}_{n}^{i-1} = (D_{s}^{T} W \mathbf{e}_{s})^{i-1}, \end{cases}$$
(9)

и адаптивного метода интегрированных моделей с учетом априорной информации о фильтрационных параметрах пласта (АМИМ_1)

$$\begin{cases} \boldsymbol{\alpha}_{n}^{i} = \boldsymbol{\alpha}_{n}^{i-1} + h_{i,n} \Delta \boldsymbol{\alpha}_{n}^{i-1}, & i = 1, 2, 3, ..., \\ \left(D_{s}^{T} W D_{s} + \beta D_{v}^{T} D_{v} \right)^{i-1} \Delta \boldsymbol{\alpha}_{n}^{i-1} = \\ = \left(D_{s}^{T} W \mathbf{e}_{s} + \beta D_{v}^{T} \overline{\boldsymbol{e}}_{v} \right)^{i-1}, \end{cases}$$
(10)

который следует из (7) при $\beta_2 = \beta_3 = 0$.

Оценки гидропроводности $\sigma_n^* = \alpha_1^*(\beta)$, комплексного параметра $k_p^*(n) = \alpha_2^*(\beta)$ и пластового давления

$$P_{nn}(n) = P(t_0) + \frac{1}{4\pi\sigma_n^*} \int_{t_0}^{n} \frac{(q_0 - q(\tau))}{n - \tau} \exp(-\frac{1}{k_p^*(n - \tau)}) \cdot d\tau$$

получены с использованием стратегии «скользящего интервала», где в обработке участвуют данные из интервала $[n_n + \Delta n + i]$, $1 \le i \le n_k - \Delta n$, $n_n = 0$, $\Delta n = 5$, что достигается соответствующим выбором значений весовых функций w(n), $n = \overline{1, n_k}$ в матрице W(7), (9), (10). Здесь *i* – номер текущего интервала обработки; n_n , Δn – количество измерений забойного давления в начальном участке КВД $[t_0, t_n]$ и, соответственно, в интервале обработки. Оценки управляющих параметров $\beta = (\beta_1, \beta_2, \beta_3)$ получены путем решения оптимизационной задачи

$$\boldsymbol{\beta}_{n}^{*} = \arg\min_{\boldsymbol{\beta}_{n}} \left\| P_{3,n}^{*} - P_{3}\left(t_{n}, \boldsymbol{\alpha}_{n}^{*}(\boldsymbol{\beta}_{n}), q\right) \right\|^{2}$$

методом деформированного многогранника [5].

В качестве дополнительных априорных сведений использовались данные о гидропроводности $\overline{\sigma}=1 \text{ Дсм/с}\Pi$, комплексном параметре $\overline{k}_p=1 \ 10^{-4} \text{ c}^{-1}$, пластовом давлении $\overline{P}_{ns}=245$ ат, и накопленной жидкости в стволе скважины после ее остановки $\overline{V}=2 \text{ м}^3$ с последующей их корректировкой по схеме приведенной в [6].

Метод	Время, ч	Пластовое	Гидропро-	Комплексный
		давление,	водность,	параметр,
		ат	Дсм/сП	c ⁻¹ ,10 ⁻⁴
«PanSystem»	98	243,6	0,252	0,47807
«Saphir»	98	242,8	0,246	0,48134
АМНС	25	260,1	0,223	0,40235
	50	257,9	0,245	0,74412
	75	256,6	0,247	1,08129
	98	254,6	0,268	2,31790
АМИМ_1	25	258,6	0,231	0,48573
	50	258,0	0,234	0,48409
	75	257,2	0,233	0,48340
	98	256,1	0,232	0,48314
АМИМ	25	246,9	0,252	0,48716
	50	245,4	0,251	0,48407
	75	244,6	0,253	0,48334
	98	243,6	0,250	0,48309

Таблица. Результаты обработки КВД скважины № 335

На рис. 1–3 и в таблице приведены оценки пластового давления, гидропроводности и комплексного параметра, полученные адаптивным методом интегрированных моделей в системе «пласт-скважина» (АМИМ), адаптивным методом интегрированных моделей с учетом информации о фильтрационных параметрах пласта (АМИМ_1) и адаптивным методом наилучшего совмещения (АМНС) за разные периоды исследований.

Рис. 2. Оценки пластового давления с учетом притока; Метод: 1) АМИМ; 2) АМИМ_1; 3) АМНС

Рис. 3. Оценки гидропроводности пласта; Метод: 1) АМИМ; 2) АМИМ_1; 3) АМНС

Из рис. 2, 3 и таблицы видно, что оценки параметров нефтяного пласта, полученные адаптивным методом интегрированных моделей в системе «пласт—скважина», устойчивые и более точные по сравнению с оценками, полученными адаптивным методом наилучшего совмещения и адаптивным методом интегрированных моделей с учетом информации о фильтрационных параметрах пласта.

Выводы

 Предложены модели и алгоритмы адаптивной идентификации и интерпретации нестационарных гидродинамических исследований скважин в системе «пласт—скважина», основанные на технологии метода интегрированных моделей и позволяющие наиболее полно учитывать дополнительную априорную информацию о фильтрационных параметрах, энергетическом состоянии нефтяных пластов и накопленной продукции в скважине после ее остановки.

СПИСОК ЛИТЕРАТУРЫ

- Шагиев Р.Г. Исследование скважин по КВД. М.: Наука, 1998. – 304 с.
- Ипатов А.И., Кременецкий М.И., Гуляев Д.Н. Современные технологии гидродинамических исследований скважин и их возрастающая роль в разработке углеводородов // Нефтяное хозяйство. – 2009. – № 1. – С. 52–55.
- Сергеев В.Л., Аниканов А.С. Метод адаптивной идентификации гидродинамических исследований скважин с учетом априорной информации // Известия Томского политехнического университета. – 2010. – Т. 317. – № 5. – С. 50–52.

- 2. На примере гидродинамических исследований скважины нефтяного месторождения Тюменской области показано, что метод адаптивной интерпретации в системе «пласт—скважина» дает более устойчивые и точные оценки параметров однородно пористого нефтяного пласта, сокращает время простоя скважины по сравнению с традиционным методом наилучшего совмещения, технологиями, реализованными в программных комплексах «PanSystem» и Saphir, и технологией адаптивной идентификации, где учитывается априорная информация только о фильтрационных параметрах пласта.
- Наиболее полный учет дополнительной априорной информации о фильтрационных параметрах и энергетическом состоянии пласта и скважины позволяет повысить качество алгоритмов интерпретации, сократить простои скважин и увеличить добычу нефти.
- Сергеев В.Л. Интегрированные системы идентификации. Томск: Изд-во Томского политехнического университета, 2011. –198 с.
- 5. Пантелеев А.В., Летова Т.А. Методы оптимизации в примерах и задачах. М.: Высшая школа, 2002. 544 с.
- Кемерова П.А., Сергеев В.Л., Аниканов А.С. Адаптивная идентификация и интерпретация нестационарных гидродинамических исследований с учетом притока продукции в скважине // Известия Томского политехнического университета. – 2011 – Т. 319. –№ 5. – С. 43–46.

Поступила 21.04.2012 г.