расчета используем формулу нахождения мощности при заряде постоянным током. Подставив значения с осциллограмм, получим:

$$P = \frac{I^2}{C} \left(2t_1 + \frac{t_2}{2} \right) =$$

$$= \frac{6^2}{360 \cdot 10^{-6}} \left(2 \cdot 0,02 + \frac{0,03}{2} \right) = 5500 \text{ Bt.}$$

Полученные цифры показывают мощность, потраченную на заряд емкостного накопителя в единицу времени. По результатам расчета можно сделать вывод, что значение переданной в нагрузку энергии при ступенчатом снижении зарядного тока на ~70 % превышает аналогичную величину при заряде постоянным током. При этом напряжение и ток первичной цепи остаются неизменными.

Примененное в работе схемное решение является простым и не представляет сложности в управлении. Заметим, что в схеме источника работают

СПИСОК ЛИТЕРАТУРЫ

- Пентегов Е.В. Основы теории зарядных цепей емкостных накопителей энергии. – Киев: Наукова думка, 1982. – 406 с.
- Багинский Б.А. Бестрансформаторные преобразователи переменного напряжения в постоянное. Томск: Изд-во ТПУ, 1990. 220 с.
- Булатов О.Г. Полупроводниковые зарядные устройства емкостных накопителей энергии. – М.: Радио и связь, 1986. – 160 с

параллельно два преобразователя постоянного напряжения с одинаковыми параметрами, работающими в режиме стабилизации зарядного тока. Такое решение позволяет уменьшить пульсацию зарядного тока и распределить по каналам передаваемую мощность.

Выводы

Описан и исследован стабилизатор зарядного тока емкостного накопителя с повышенной мощностью, передаваемой в нагрузку в течение рабочего цикла. Результаты расчетов мощности, выделяемой в нагрузке, показали возможность ее увеличения при формировании ступенчатого зарядного тока. Поскольку процесс заряда сократился во времени с 65 до 50 мс, КПД устройства по сравнению с прототипом на основе заряда постоянным током вырос на 20 %. Одновременно достигнуто повышение частоты зарядно-разрядных циклов емкостного накопителя.

4. Кныш В. А. Полупроводниковые преобразователи в системах заряда накопительных конденсаторов. Л.: Энергоатомиздат, 1981. 160 с.

Поступила 17.05.2011 г.

УДК 621.3.082

ИССЛЕДОВАНИЕ ШИРОКОДИАПАЗОННЫХ ПЬЕЗОКВАРЦЕВЫХ ВЛАГОЧУВСТВИТЕЛЬНЫХ ЭЛЕМЕНТОВ

В.Е. Иващенко, В.Г. Мазур, А.Д. Пудалов

Ангарская государственная техническая академия, г. Ангарск E-mail: systems-ntfs@mail.ru

Предложен пьезосорбционный метод измерения влажности газов и жидких органических соединений в диапазоне от 0 до 100 %. В основе метода измерений лежит одновременное использование двух типов сорбентов. Результатом исследования является расчет их оптимальных соотношений.

Ключевые слова:

Влажность, измерение, сорбент, пьезосорбционный чувствительный элемент, частота, газ, органическая жидкость, диапазон концентраций.

Key words:

Humidity, measurement, sorbent, piezosorption sensitive element, frequency, gas, organic liquid, range of concentrations.

Во многих отраслях промышленности и в целом ряде областей научных исследований приходится сталкиваться с решением задач, связанных с измерением влажности газов и жидких органических соединений.

Современные приборы, предназначенные для измерения влажности газов и жидкостей, позволя-

ют осуществлять измерения либо в диапазоне микро-, либо макроконцентраций [1–4]. Приборы, которые бы охватывали весь диапазон измерений, включая низкие, средние и макроконцентрации, отсутствуют, что может приводить к снижению эффективности управления технологическими процессами. С появлением такого прибора многие за-

дачи измерения влажности, которые сейчас решаются с помощью двух или нескольких узкодиапазонных измерителей, можно будет решить, имея в распоряжении всего лишь один широкодиапазонный прибор.

Существует большое количество методов измерения влажности [5]. Одни из них пригодны как для газов, так и для жидкостей, другие применимы только для одного из двух [6]. Среди небольшого числа методов, имеющих широкий диапазон измерений и пригодных для анализа газообразных и жидких сред, можно выделить сорбционно-частотный метод (СЧМ), который на протяжении последних десятилетий широко применяется в аналитическом приборостроении [7]. Он основан на зависимости частоты колебаний пьезокварцевого сорбционного влагочувствительного элемента от влажности анализируемой среды. Влагочувствительный элемент представляет собой кварцевую пластинку с двумя электродами, присоединёнными к центру пластины; на поверхность электродов и на саму пластинку тонким слоем нанесены влагопоглощающие вещества. В зависимости от измеряемой влажности (микро- или макроконцентрации) применяют различные сорбенты. Процессы сорбции-десорбции сорбентом влаги приводят к изменению его массы и соответственно частоты колебаний пьезосорбционного чувствительного элемента (ПСЧЭ).

СЧМ позволяет создавать приборы для измерения влажности газов и жидкостей. Одни из них рассчитаны на измерения микроконцентраций на уровне $0.5~\rm MлH^{-1}$ [8], другие — макроконцентраций [9].

На металлургическом производстве, в метеорологических исследованиях (в частности в метеорологических зондах), в высоковольтных переключателях, использующих элегаз, наибольший интерес представляет измерение влажности именно в среднем диапазоне влажности, который начинается от 2 %.

Измерение влажности для указанного диапазона СЧМ может быть достигнуто путем нанесения на кварцевый пьезоэлемент различных сорбентов, каждый из которых рассчитан на определенный диапазон концентраций влаги. Например, в диапазоне от 0 до 1000 млн-1 можно использовать силикагель [10, 11]. Если влажность становится больше 1000 млн⁻¹, то в связи с тем, что произошло насыщение сорбента влагой, дальнейшего ее поглощения практически не будет и, следовательно, для измерения необходим другой сорбент. В качестве сорбентов для ПСЧЭ, предназначенных для измерения средних и высоких концентраций влаги, можно использовать полимерные материалы, в частности, синтетические гетероцепные полиамиды [12], которые при увеличении влажности анализируемой среды вплоть до 100 % не достигают состояния насыщения. Таким образом, если на кварцевый пьезоэлемент нанести два сорбента, например, силикагель и полиамид, то полученный ПСЧЭ сможет обеспечить измерение влажности в широком диапазоне, включая микро- и макроконцентрации.

Одна из проблем, которая возникает при изготовлении ПСЧЭ с несколькими сорбентами, связана с выбором оптимального способа нанесения различных сорбентов на кварцевый пьезоэлемент. Сорбенты могут быть нанесены либо один поверх другого — полимерное покрытие наносится на силикагель, либо отдельно друг от друга — один на одну сторону пьезоэлемента, другой — на другую.

ПСЧЭ, изготовленные первым из указанных способом, имеют два существенных недостатка. Один из них связан с ухудшением инерционности ПСЧЭ в области микроконцентраций влаги. Это объясняется тем, что при диффузии молекул воды через наружный слой поли-ε-капроамида, который не задействован в области микроконцентраций, затрачивается дополнительное время. Второй недостаток заключается в том, что при двухслойном способе нанесения сорбентов понижается чувствительность ПСЧЭ за счет частичного блокирования полиамидом активных центров адсорбции силикагеля.

В свою очередь, нанесение сорбентов на разные стороны кварцевой пластины лишает ПСЧЭ указанных недостатков.

В данной работе рассмотрен метод нанесения сорбентов на разные стороны пьезокварцевой пластины.

Целью настоящей работы является:

- разработка математических моделей метрологических характеристик ПСЧЭ, обеспечивающих измерение влажности веществ в диапазоне от микро- до макроконцентраций;
- 2) экспериментальная проверка математических моделей;
- разработка рекомендаций по выбору количественного соотношения наносимых на пьезоэлемент сорбентов в зависимости от области измерения влажности.

Справедливо следующее соотношение [13]:

$$\frac{\Delta m_{\rm H_2O}}{m_c} = \frac{\Delta F_{\rm H_2O}}{\Delta F_c},$$

где Δm_c — изменение массы ПСЧЭ при нанесении на него сорбента; ΔF_c — изменение частоты ПСЧЭ от количества нанесенного сорбента; $\Delta m_{\rm H,0}$ — изменение массы ПСЧЭ в результате сорбщии воды сорбентом; $\Delta F_{\rm H,0}$ — изменение частоты ПСЧЭ в результате сорбщии воды сорбентом.

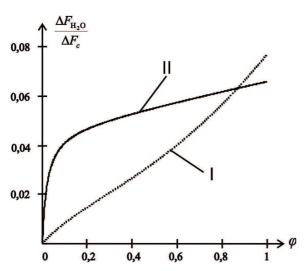
Статические характеристики сорбции влаги (СХСВ) ПСЧЭ с силикагелем и поли-є-капроамидом рассмотрены в [14, 15]. СХСВ для силикагеля описывается выражением:

$$\frac{\Delta F_{\rm H_2O}}{\Delta F_{c_-s}} = \left(C_1 \varphi + \frac{k'k\varphi}{1 + k\varphi}\right),\tag{1}$$

где ϕ — относительная влажность, выраженная в долях; $\Delta F_{c,s}$ — изменение частоты ПСЧЭ от массы нанесенного силикагеля; k', k, C_1 — безразмерные коэффициенты.

При $k'=4,71\cdot10^{-2}$, k=47,18 и $C_1=1,97\cdot10^{-2}$ максимальное расхождение между расчётной и экспери-

ментальной статическими характеристиками при значениях относительной влажности ϕ от 0 до 1 не превышает 1 %.


СХСВ ПСЧЭ с поли- ε -капроамидом описывается как

$$\frac{\Delta F_{H_2O}}{\Delta F_{c,k}} = \frac{BC\phi}{1 + (C - 1)\phi} \left(\frac{1 - \phi^n}{1 - \phi}\right),\tag{2}$$

где $\Delta F_{c_{-k}}$ — изменение частоты ПСЧЭ от массы нанесенного поли- ε -капроамида; B, C, n — безразмерные коэффициенты.

При B=0,022, C=4,7, n=3,5 максимальное расхождение между расчётной и экспериментальной статическими характеристиками при изменении относительной влажности ϕ от 0 до 1 не превышает 1 %.

СХСВ ПСЧЭ с поли- ε -капроамидом и силикагелем, построенные по формулам (1) и (2), приведены на рис. 1.

Рис. 1. СХСВ ПСЧЭ с поли- ϵ -капроамидом (I) и силикагелем (II)

Для того чтобы исследовать, какое соотношение сорбентов необходимо взять для обеспечения критерия максимальной чувствительности ПСЧЭ во всём диапазоне влажности или в отдельной области, необходимо иметь информацию о чувствительности ПСЧЭ с поли-ε-капроамидом и ПСЧЭ с силикагелем для диапазона влажности от 0 до 1.

Чувствительность ПСЧЭ с сорбентами находится путём вычисления производной от их СХСВ.

Чувствительность ПСЧЭ с поли- ε -капроамидом описывается выражением:

$$\frac{d}{d\varphi} \left(\frac{\Delta F_{H_2O}}{\Delta F_{c_-k}} \right) = BC \times \left(\frac{C\varphi^{n+2} - C\varphi^2 - 2n\varphi^{n+1} + n\varphi^{n+2} - \varphi^{n+2} + (\varphi^2 + n\varphi^n + \varphi^n + Cn\varphi^{n+1} - Cn\varphi^{n+2} - 1)}{(\varphi - 1)^2 (C\varphi - \varphi + 1)} \right). \tag{3}$$

Чувствительность ПСЧЭ с силикагелем описывается выражением:

$$\frac{d}{d\varphi} \left(\frac{\Delta F_{\text{H}_2\text{O}}}{\Delta F_{c,s}} \right) = C_1 + \frac{kk'}{k\varphi + 1} - \frac{k^2 k' \varphi}{(k\varphi + 1)^2}. \tag{4}$$

На рис. 2 приведены зависимости чувствительности поли- ε -капроамида и силикагеля от влажности, построенные по формулам (3) и (4).

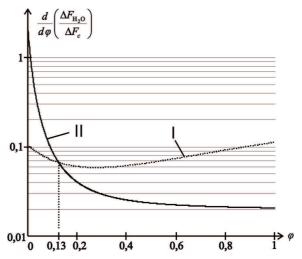


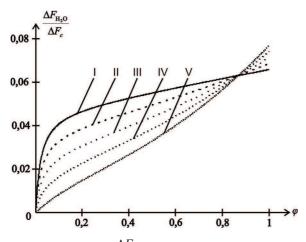
Рис. 2. Зависимость чувствительности ПСЧЭ с поли-є-капроамидом (I) и силикагелем (II) от относительной влажности

Из рис. 2 видно, что чувствительность ПСЧЭ с силикагелем в области микроконцентраций выше, чем с поли- ε -капроамидом, почти в 22 раза. При влажности свыше 0,13 чувствительность ПСЧЭ с поли- ε -капроамидом становится выше, а у ПСЧЭ с силикагелем уменьшается.

Таким образом, зная чувствительность ПСЧЭ с сорбентами на разных участках влажности, можно комбинировать их соотношения, достигая оптимального результата по чувствительности в нужном диапазоне измерения влажности.

Представляет интерес и то, как будет меняться

функция
$$\frac{\Delta F_{\text{H}_2\text{O}}}{\Delta F_c}$$
 от влажности при нанесении сор-


бентов при разном их процентном соотношении.

В том случае, если использовано 2 вида сорбентов, то СХСВ ПСЧЭ описывается выражением:

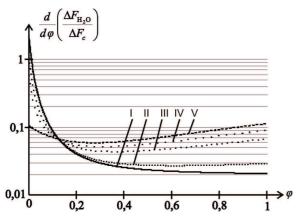
$$\frac{\Delta F_{\rm H_2O}}{\Delta F_c} = l \left(C 1 \varphi + \frac{k' k \varphi}{1 + k \varphi} \right) + + (1 - l) \frac{B C \varphi}{1 + (C - 1) \varphi} \left(\frac{1 - \varphi^n}{1 - \varphi} \right), \tag{5}$$

где l — доля нанесенного силикагеля по отношению к поли- ε -капроамиду.

Полученные зависимости представлены на рис. 3. Как видно из рис. 3, полученные зависимости располагаются между аналогичными зависимостями, построенными отдельно для чистого поли- ε -капроамида и силикагеля.

Рис. 3. Зависимость $\frac{\Delta F_{\mathrm{H_2O}}}{\Delta F_c}$ от влажности при соотношении

сорбентов силикагель:поли-ε-капроамид: I) 1:0; II) 0,75:0,25; III) 0,50:0,50; IV) 0,25:0,75; V) 0:1

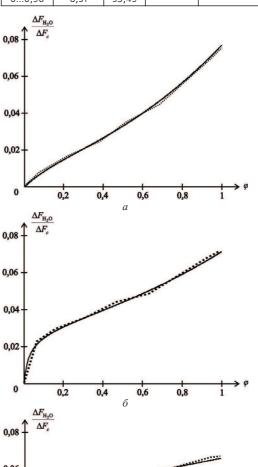

Чувствительность находится путём вычисления производной по φ от выражения (5):

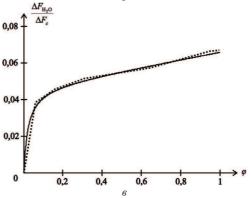
$$\frac{d}{d\varphi} \left(\frac{\Delta F_{\text{H}_2\text{O}}}{\Delta F_c} \right) =$$

$$l \left(C_1 + \frac{kk'}{k\varphi + 1} - \frac{k^2 k' \varphi}{(k\varphi + 1)^2} \right) + BC(l-1) \times$$

$$\times \frac{\left(C\varphi^{n+2} - C\varphi^2 - 2n\varphi^{n+1} + n\varphi^{n+2} - \varphi^{n+2} + \right)}{(\varphi - 1)^2 (C\varphi - \varphi + 1)}.$$
(6)

На рис. 4 приведены графики зависимости чувствительности ПСЧЭ от влажности, построенные по выражению (6), с тем же соотношением сорбентов.




Рис. 4. Зависимости чувствительности ПСЧЭ от влажности при различном соотношении поли-ε-капроамида и силикагеля

При помощи метода наименьших квадратов были найдены оптимальные соотношения сорбентов для различных диапазонов влажности исходя из критерия наибольшей чувствительности ПСЧЭ. Эти соотношения представлены в таблице.

Таблица. Оптимальные соотношения сорбентов для разных диапазонов влажности

Диапазон влажности	Соотношение сорбентов		Пиадазац	Соотношение сорбентов	
	Поли-ε-	Силика-	- Диапазон влажности	Поли- $arepsilon$ -	Силика-
	капроа-	гель,		капроа-	гель,
	мид, ×10 ⁻²	×10 ⁻²		мид, ×10 ⁻²	×10 ⁻²
00,10	0,00	100	0,001	8,83	91,17
00,15	0,01	99,99	0,011	24,05	75,95
00,20	0,05	99,95	0,021	47,34	52,66
00,25	0,15	99,85	0,031	68,76	31,24
00,30	0,29	99,71	0,041	83,29	16,71
00,40	0,68	99,32	0,051	91,60	8,40
00,50	1,25	98,75	0,061	95,96	4,04
00,60	2,06	97,94	0,071	98,16	1,84
00,70	3,16	96,84			
00,80	4,63	95,37			
00,90	6,51	93,49			

Рис. 5. Теоретическая и экспериментальная СХСВ ПСЧЭ с сорбентами поли-ε-капроамид:силикагель в пропорции: a) 0,25:0,75; б) 0,50:0,50; в) 0,75:0,25

Согласно таблице, оптимальное соотношение сорбентов для влажности от 0 до 1 составляет примерно 0.91 силикагеля и 0.09 поли- ε -капроамида.

Для подтверждения результатов в лабораторных условиях были изготовлены ПСЧЭ с соотношением сорбентов силикагель:поли-є-капроамид: 0,25:0,75; 0,50:0,50; 0,75:0,25. Для каждого соотношения было изготовлено по 3 ПСЧЭ. При помощи генератора влажного газа, работающего на методе двух давлений, были измерены СХСВ ПСЧЭ (рис. 5). На графиках сплошными линиями показаны теоретические СХСВ, рассчитанные по формуле (5) пунктиром — экспериментальные СХСВ, показания которых были измерены с ПСЧЭ при влажности: 0,05; 0,15; 0,30; 0,45; 0,60; 0,90; 0,97. Теоретические СХСВ и экспериментальные СХСВ имеют максимальное расхождение не более 4 %.

Экспериментальные исследования показали, что полученное выражение (5) справедливо как для газов (в эксперименте был использован азот), так и для жидких органических соединений, таких как предельные углеводороды (пентан, гексан, декан), а так же для бензола и толуола.

СПИСОК ЛИТЕРАТУРЫ

- 1. НПК Микрофор. 2011. URL: http://www.microfor.ru/ (дата обращения: 26.01.2012).
- 2. Ангарское ОКБА // Гигрометры. 2012. URL: http://www.ok-ba.ru/produce/hygrometers.php (дата обращения: 26.01.2012).
- Ангарское ОКБА // Влагомер трансформаторного масла BTM-MK. 2012. URL: http://www.okba.ru/produce/energy/vtm-mk.php (дата обращения: 26.01.2012).
- BARTEC Company // Moisture Measurements in Hydrocarbon. 2012. URL: http://www.bartec.de/homepage/eng/20_produkte/16_messtechnik/s_20_16_60_011.shtml (дата обращения: 26.01.2012).
- Берлинер М.А. Измерения влажности. М.: Энергия, 1973. 400 с.
- Ivashchenko V.E., Mazur V.G., Tomilin M.A. Application of Sorption-Frequency Method in Comparison with Other Methods for Measurement of Humidity Nanoconcentration in Gases and Liquids // IEEE IInd Russia School and Seminar MNST. Novosibirsk, 2010. P. 45–47.
- King W.H. Piezoelectric sorption detector // Anal. chem. 1964. V. 36. – P. 1735–1739.
- Ангарское ОКБА / Гигрометр «Байкал-RG». 2012. URL: http://www.okba.ru/produce/hygrometers/baikal-rg.php (дата обращения: 26.01.2012).

Опыты были проведены в условиях стабилизированной температуры $20\pm0,2$ °C. В качестве результатов измерений использовался разностный сигнал между частотами датчика и опорного генератора.

Выводы

- Разработаны математические модели статических характеристик сорбции влаги для пьезосорбционного чувствительного элемента с поли-ε-капроамидом и силикагелем, а также чувствительности пьезосорбционного чувствительного элемента во всём диапазоне влажности при нанесении сорбентов на разные стороны кварцевой пластины.
- 2. Экспериментально определены статические характеристики сорбции влаги пьезосорбционного чувствительного элемента при соотношении сорбентов 0,25:0,75; 0,50:0,50; 0,75:0,25, показано, что расхождение результатов эксперимента с математическими моделями не превышает 4 %.
- 3. Определено что оптимальное соотношение сорбентов для влажности от 0 до 1 составляет 0,91 силикагеля и 0,09 поли-ε-капроамида.
- Ангарское ОКБА / Гигрометр «Волна 5П». 2012. URL: http://www.okba.ru/produce/hygrometers/volna-5p.php (дата обращения: 26.01.2012).
- 10. Ангарское ОКБА / Гигрометр «Исток». 2012. URL: http://www.okba.ru/produce/hygrometers/istok.php (дата обращения: 26.01.2012).
- 11. Кибардин С.А., Макаров К.А. Тонкослойная хроматография в органической химии. М.: Химия, 1978. 125 с.
- 12. Коршак В.В., Фрунзе Т.М. Синтетические гетероцепные полиамиды. М.: АН СССР, 1962. 438 с.
- Sauerbrey G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung // Zeitschrift für Physik. – 1959. – Bd. 155. – S. 206–222.
- Кольцов С.И., Апосковский В.Б. Силикагель, его строение и химические свойства. – Л.: Госхимиздат, 1963. – 95 с.
- 15. Серебрякова З.Г., Михайлов Н.В. Исследование сорбционных свойств полиамидных волокон в зависимости от их структуры // Высокомолекулярные соединения. 1959. Т. 1. № 2. С. 222—228.

Поступила 08.02.2012 г.