УДК 621.313

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ТОРЦЕВОМ СИНХРОННОМ ГЕНЕРАТОРЕ С МАГНИТОЭЛЕКТРИЧЕСКИМ ВОЗБУЖДЕНИЕМ

М.Г. Архипцев, А.Л. Встовский, В.И. Пантелеев, К.С. Федий

Политехнический институт Сибирского Федерального университета, г. Красноярск E-mail: maximus 09@mail.ru

Разработана математическая модель переходных процессов низкоскоростного торцевого синхронного генератора на методологической основе обобщенного электромеханического преобразователя, для определения параметров которой используется полевая электромагнитная модель исследуемого генератора.

Ключевые слова:

Торцевой синхронный генератор, постоянные магниты, переходные процессы, распределение магнитного поля.

Key words:

End synchronous generator, permanent magnets, transients, magnetic field distribution.

Низкоскоростные генераторы мощностью в 30-50 кВт оказываются все более востребованы в связи с повышенным интересом к возобновляемым источникам электроснабжения (ВИЭ): ветроэнергоустановкам, деривационным и свободнопоточным мини- и микроГЭС. Турбина свободнопоточной микроГЭС вращается с частотой (85–250) об/мин, при прямом приводе генератора от турбины для получения промышленной частоты необходим герметизированный низкоскоростной синхронный генератор с возбуждением от постоянных магнитов.

В Сибирском федеральном университете (г. Красноярск) разработан низкоскоростной торцевой синхронный генератор (НТСГ) с возбуждением от постоянных магнитов [1].

В нем распределенная обмотка статора выполнена в виде обмоточных модулей, которые крепятся к ярму активными пакетами, состоящими из изолированных стальных пластин (элементарные зубцы) и слоев обмоточного провода. Такое построение активной зоны статора позволило значительно увеличить число полюсов (до 20-50). Ротор выполнен в виде массивного диска из ферромагнитного материала, на котором размещены постоянные магниты трапецеидальной формы, фиксируемые полюсными наконечниками. Полюсные наконечники имеют уменьшенное к краям полюсов сечение для улучшения формы магнитного поля в зазоре машины.

Созданная для электромагнитного расчета математическая модель НТСГ применима и для расчета других конструкций генераторов с постоянными магнитами. Основная задача расчета магнитной системы проектируемого генератора с постоянными магнитами [2] заключалась в определении оптимальной по габаритам, массе, стоимости и другим показателям конструкции, обеспечивающей в рабочем зазоре заданное значение магнитного потока.

Особенностями любой локальной системы электроснабжения, питающейся от ВИЭ, являются соизмеримость мощностей источника энергии

и потребителя, частые переходные процессы, связанные с изменениями нагрузки потребителя; существенная зависимость мощности приводного движителя от водного потока или скорости ветра. Для стабилизации выходного напряжения и частоты любой возобновляемый источник электроснабжения оснащается системой управления, выбор элементов которой зависит от величины переходных токов. В этой связи актуальным является исследование переходных процессов в генераторе с целью обеспечения работоспособности системы электроснабжения, снижения массы, габаритов и стоимости энергоустановки.

Настоящая статья имеет целью разработку математической модели переходных процессов НТСГ на методологической основе обобщенного электромеханического преобразователя, для определения параметров которой используется полевая электромагнитная модель исследуемого генератора [2] и магнитные схемы замещения.

При математическом описании синхронной машины сделан ряд общепринятых допущений, которые дают возможность вместо реальной машины с достаточной степенью точности исследовать идеализированную синхронную машину [3].

В генераторах малой мощности активное сопротивление обмотки статора соизмеримо с индуктивным сопротивлением рассеяния и существенно влияет на характер переходных процессов. Поэтому в математической модели переходных процессов НТСГ учтено влияние активного сопротивления, которое сокращает длительность процессов, и они становятся затухающими, амплитуда тока не возрастает. Перечисленные показатели имеют существенное значение для построения системы управления, от которой зависят качество стабилизации напряжения и его частоты.

Магнитные свойства стабилизированных магнитов характеризуются внутренней магнитной проводимостью, что позволяет заменить ротор НТСГ с магнитами и полюсными наконечниками некоторой фиктивной обмоткой возбуждения и стержнями демпферной обмотки, подключенными к источнику тока и создающей МДС F_{M0} [4]. В этом случае I_{M0} =const.

При анализе переходных процессов типа «сброс—наброс нагрузки», «короткое замыкание» демпферную обмотку можно не учитывать в связи с примерным постоянством частоты вращения ротора. В результате уравнения равновесия напряжений синхронного генератора с постоянными магнитами можно записать аналогично уравнениям обычной синхронной машины.

Для выполнения расчетов в одной системе координат параметры роторной обмотки приведены к параметрам статорной обмотки.

Исходя из вышесказанного и учитывая, что потокосцепление есть произведение индуктивностей на соответствующие токи, дифференциальные уравнения машины представим в виде:

$$\begin{aligned} u_d &= L_d di_d / dt + u_t \cdot L_{dM} I_{M0} - u_t \cdot L_q i_q + r_a i_d \\ u_q &= L_q di_q / dt + u_t \cdot [L_d i_d + L_{dM} I_{M0}] + r_a i_q \\ u_c &= L_q di_q / dt + u_t \cdot L_q I_q + r_c I_q \end{aligned}$$

$$(1)$$

где L_d , L_q — полные индуктивности обмотки якоря по продольной и поперечной осям; u_d , u_q — напряжения обмотки статора по продольной и поперечной осям; u_f напряжение обмотки возбуждения; L_{ad} — взаимная индуктивность между обмоткой якоря и возбуждения; i_d , i_q — токи статора по продольной и поперечной осям, соответственно; r_a , r_f — активные сопротивления статора и обмотки возбуждения; L_{dm} — взаимная индуктивность между обмоткой возбуждения и обмоткой якоря; I_{m0} — эквивалентный ток возбуждения; $\omega \cdot L_{dm}I_{m0}$ — потокосцепление обмоток статора и ротора по продольной оси с полем постоянных магнитов.

Уравнения (1) устанавливают связь между напряжениями и токами машины. В них в качестве коэффициентов входят активные сопротивления обмоток якоря, возбуждения и индуктивности само- и взаимоиндукции обмоток, зависящие от формы магнитного поля в рабочем зазоре и, следовательно, от конструкции ротора. Расчетная полевая модель НТСГ с постоянными магнитами для определения электрических параметров представлена на рис. 1.

По расчетной модели составлена схема замещения магнитной цепи для потока реакции якоря по продольной оси (рис. 2, *a*). Сопротивление в схеме замещения — это величина обратная магнитной проводимости. Магнитные проводимости определяют величину индуктивных сопротивлений: x_d , x_q , x_{dM} , x_{ad} — пропорциональных ($x=\omega L$) соответствующим индуктивностям в уравнении (1).

Коэффициенты формы поля, входящие в формулы магнитных сопротивлений, определяются разложением в гармонический ряд индукций соответствующих полей. В синхронных машинах с постоянными магнитами воздушный зазор равномерен и невелик, а длина полюсной дуги значительна. Поле в рабочем зазоре в пределах полюсной дуги для ротора распределено по прямоугольному закону, для статора — по закону близкому к синусоидальному (рис. 2, δ), а в промежутках между полюсами равно нулю.

Для расчета коэффициента формы поля продольной реакции якоря k_d определим первую гармонику индукции в зазоре, исходя из рис. 2, δ :

$$B_{ad1} = \frac{2}{\pi} \frac{\int_{-\pi}^{\pi} a_1}{\int_{-\pi}^{\pi} a_2 + \alpha_1} B_{ad} \cos^2 \alpha d\alpha =$$
$$= \frac{B_{ad} \cdot (\pi - 2 \cdot \alpha_1 + \sin(2 \cdot \alpha_1))}{\pi},$$

где B_{ad} — магнитная индукция реакции якоря по продольной оси, Тл; $2\alpha_1$ — межполюсное расстояние, рад.

Рис. 1. Расчетная модель явнополюсного генератора. Φ_{δM} – магнитный поток, создаваемый постоянным магнитом; Φ_δ – рабочий поток HTCГ; b_n – ширина полюсного наконечника; τ – полюсное деление.

Рис. 2. Схема замещения магнитной цепи (а) и распределение магнитного поля потока реакции якоря по продольной оси (б)

Откуда коэффициент

$$k_d = B_{ad1} / B_{ad} = \frac{(\pi - 2 \cdot \alpha_1 + \sin(2 \cdot \alpha_1))}{\pi}$$

Аналогично определяются индукции и коэффициенты формы поля для схем с другими распределениями магнитного поля реакции якоря и магнитного поля магнита.

Магнитное сопротивление воздушного зазора $R_{\delta d}$ для потока $\Phi_{\delta d}$ будет равно:

$$R_{\delta d} = \frac{F_{\delta dm}}{\Phi_{\delta d}} = \frac{\pi \cdot \delta \cdot k_{\delta}}{2 \cdot \mu_0 \cdot \tau \cdot l_{\delta} \cdot k_{\phi d} \cdot k_d} = \frac{1}{\Lambda_{\delta d}},$$

где δ – воздушный зазор; k_{δ} – коэффициент Картера; μ_0 – магнитная проницаемость воздуха; τ – полюсное деление по внутреннему диаметру генератора; l_{δ} – активная длина пакета статора; $k_{\phi d}$ – коэффициент формы поля по продольной оси; $\Lambda_{\delta d}$ – проводимость воздушного зазора по продольной оси.

Аналогично определяются магнитные сопротивления $R_{\delta d}$ для потока $\Phi_{\delta d}$; $R_{\delta m}$ рабочего зазора для потока $\Phi_{\delta m}$; R_{m} полюса магнита по продольной оси; R_{s} рассеяния якоря.

Магнитные проводимости получены как обратная величина соответствующих сопротивлений в схеме замещения (рис. 2, *a*). С учетом магнитных проводимостей получены индуктивные сопротивления. Так, главное индуктивное сопротивление якоря по продольной оси машины:

$$x_{ad} = \frac{2 \cdot m \cdot f_1 \cdot W_1^2 \cdot k_{01}^2}{p} \cdot \mathcal{J}_{ad1},$$

где m — число фаз статора; f_1 — частота выходного напряжения генератора; W_1 — число витков статора; k_{01} — обмоточный коэффициент; $\Lambda_{adl} = \Lambda_{ad}/k_{\phi d}$ —

магнитная проводимость воздушного зазора по продольной оси, определенная из:

$$\Lambda_{ad} = \frac{1}{R_{\delta d}} \cdot \frac{(1/R_{\sigma} + 1/R_{\scriptscriptstyle M})}{(1/R_{\delta d} + 1/R_{\sigma} + 1/R_{\scriptscriptstyle M})}$$

Главное индуктивное сопротивление якоря по поперечной оси машины:

$$x_{aq} = \frac{2 \cdot m \cdot f_1 \cdot W_1^2 \cdot k_{01}^2}{p} \cdot \mathcal{J}_{aq1},$$

где $\Lambda_{aq1} = \frac{1}{k_{\phi q} R_{aq}}$ — магнитная проводимость воз-

душного зазора по поперечной оси.

Полные индуктивные сопротивления якоря:

$$x_{S} = 2 \cdot p \cdot f_{1} \cdot W_{1}^{2} \cdot J_{S};$$

$$x_{d} = x_{ad} + x_{S}; \ x_{q} = x_{aq} + x_{S}$$

Для исследования переходных режимов в электрических машинах удобнее использовать операторный метод. Принимая частоту вращения ротора неизменной, вводя относительное время и переходя от оригиналов переменных функций к их изображениям, систему дифференциальных уравнений (1) представим в следующем виде:

$$U_{d}(p) = x_{d} \cdot i_{d}(p) + x_{dw} \cdot I_{M0} - x_{q} i_{q}(p) + r_{di}(p)$$

$$U_{q}(p) = x_{q} \cdot i_{q}(p) + [x_{d} i_{d} + x_{dw} I_{M0}](p) + r_{a} i_{q}(p)$$

$$U_{f}(p) = x_{ad} p \cdot i_{d}(p) + x_{dw} p \cdot I_{M0}(p) + r_{f} I_{M0}(p)$$

$$(2)$$

где $U_d(p)$, $U_q(p)$ – изображения выходных напряжений генератора; $U_f(p)$ – изображение напряжения обмотки возбуждения; i(p) – изображения токов.

Решив систему уравнений (2) относительно токов после несложных преобразований, получим:

$$i_{d}(p) = -\frac{\begin{cases} U_{d}(p) \cdot Z_{q}(p) + U_{q}(p) \cdot x_{q} + I_{M0} \times \\ \times [p \cdot x_{du}(p) \cdot Z_{q}(p) + x_{du} \cdot x_{q}] \end{cases}}{Z_{d}(p) \cdot Z_{q}(p) + x_{d} \cdot x_{q}};$$

$$i_{q}(p) = \frac{\begin{cases} U_{d}(p) \cdot x_{q} + U_{d}(p) \cdot Z_{d}(p) - I_{M0} \times \\ \times [x_{du}(p) \cdot Z_{d}(p) - p \cdot x_{du} \cdot x_{q}] \end{cases}}{Z_{d}(p) \cdot Z_{q}(p) + x_{d} \cdot x_{q}},$$

где $Z_d(p) = r_a + px_d$, $Z_q(p) = r_a + px_q$, соответственно, полные операторные сопротивления синхронного генератора по продольной и поперечной осям.

С помощью теоремы разложения определяются корни уравнения. В данном случае они равны:

$$p_{1} = -1/T_{d}^{'};$$

$$p_{2,3} = -\frac{r_{a}}{x_{2}} \pm \sqrt{(r_{a}/x_{2})^{2} - 1 - r_{a}^{2}/(x_{d}^{'}x_{q})},$$
(3)

где $T'_{d} = \frac{x'_{d}}{x_{d}} \cdot \frac{L_{d_{M}}}{r_{f}}$ — постоянная времени обмотки

возбуждения [4], которая определяется через операторное индуктивное сопротивление $x_d(p)$ и равна

0,15...0,2 c;
$$\dot{x_d} = x_s + \frac{1}{1/x_{ad} + 1/x_{du}}$$
 – переходное

индуктивное сопротивление якоря по продольной

оси; $x_2 = \frac{2 \cdot x_d \cdot x_q}{x_d + x_q}$ – индуктивное сопротивление

обратной последовательности, обусловленное свободной составляющей тока статорной обмотки.

Выражение под квадратным корнем в (3) равно мнимой единице, так как $r_a^2 < < x_2^2$.

После определения корней, определяются оригиналы токов. Общее выражение для результирующего тока трехфазного короткого замыкания выглядит следующим образом:

$$i_{k}(t) = I_{la}(t) - [I'_{m} \exp(-t / T'_{d}) + I_{m}] \cos u t, \qquad (4)$$

где

$$I_{la}(t) = 0, 5 \cdot \sqrt{2} \cdot E_o \times \left[\left(\frac{1}{x'_d} + \frac{1}{x_q} \right) \cdot \cos 2 + \left(\frac{1}{x'_d} - \frac{1}{x_q} \right) \cdot \cos(2 \cdot u_t t) \right] \exp(-t / T_a)$$

 свободная составляющая тока короткого замыкания, затухает вследствие наличия в обмотках статора активного сопротивления; *E_o* – ЭДС обмотки

статора на холостом ходу;
$$I'_{m} = E_{o} \cdot \left(\frac{1}{x'_{d}} - \frac{1}{x_{d}}\right) \cdot \sqrt{2}$$
 –

амплитуда переходного тока короткого замыкания; $I_m = \sqrt{2}E_0/x_d$ – амплитуда установившегося тока короткого замыкания; x_s – индуктивное сопротивление рассеяния; x_{ad} – главное индуктивное сопротивление якоря по продольной оси; γ – угол поворота ротора, равен 0; $T_a = x_d/r_a$ – постоянная времени свободной составляющей тока короткого замыкания, определяется из корней уравнения $p_{2,3}$.

Из уравнения (4) видно, что свободная составляющая имеет колебательный характер (рис. 3, *a*), это обусловлено тем, что магнитное поле пульсирует с частотой $2f_1$, так как в машинах с постоянными магнитами вследствие низкой магнитной проницаемости магнитов $\mu \leq 2\mu_0$.

По разработанной математической модели рассчитаны токи трехфазного короткого замыкания для низкоскоростного торцевого синхронного генератора мощностью 5 кВт, напряжением промышленной частоты 220/380 В и частотой вращения 250 об/мин.

Построив кривые отдельных составляющих и сложив их ординаты, получим результирующую кривую тока короткого замыкания.

Выражение установившегося тока короткого замыкания примет вид:

$$i_{km} = I_m \cos u_k t$$
.

Временные зависимости свободной составляющей и результирующего тока короткого замыкания представлены на рис. 3, *а*, *б*.

Рис. 3. Графики а) свободной составляющей; б) результирующего тока короткого замыкания в абсолютных единицах

I.A

60

40

20

C

-20

-40

0.2

0.3

a

0.4

0.5

В таблице приведены расчетные значения амплитуд токов и постоянных времени для генераторов различной мощности, имеющие удовлетворительную сходимость с экспериментальными значениями.

Мощно- сти гене- раторов, кВт	Амплитуда уста- новившегося тока короткого замыкания	Амплиту- да удар- ного тока	Постоянная времени Т _d '	Постоянная времени Та
P=13	1,5 <i>I</i> #	3 <i>I</i> _H	(0,060,2)c	(0,010,02)c
P=510	(22,5) <i>I</i> _H	(57) <i>I</i> _H	(0,20,4)c	(0,20,03)c
<i>P</i> =1020	(3,54,5) <i>I</i> _#	(811) <i>I</i> _H	(0,30,5)c	(0,030,04)c

Таблица. Значения амплитуд токов и постоянных времени для генераторов различной мощности

В результате взаимодействия вынужденной и свободной составляющих тока ротора кратность токов в обмотках дополнительно возрастает. При этом свободная составляющая тока затухает с постоянной времени T_a обмотки статора.

Вследствие этого суммарный ток короткого замыкания стремится поддержать неизменным потокосцепление, имеет колебательный характер и изменяется во времени так, как показано на рис. 3, δ . При этом амплитуда периодической составляющей тока уменьшается с изменением индуктивных сопротивлений от значения x_d' до x_d . Знакопеременные моменты, возникающие в результате взаимодействия магнитных потоков, весьма велики и опасны для целостности обмоток.

СПИСОК ЛИТЕРАТУРЫ

- Торцевая электрическая машина: пат. 2246168 Рос. Федерация. МПК² Н 02 К 21/24; заявл. 24.07.03; опубл. 10.02.05, Бюл. № 2. - 6 с.
- Федий К.С., Пантелеев В.И., Встовский А.Л. Анализ магнитного поля торцевого синхронного генератора с магнитоэлектрическим возбуждением // Электромеханические преобразователи энергии: Труды IV Междунар. научно-практ. конф. – Томск, 2009. – С. 84–87.

Кроме того, в начальный момент короткого замыкания машина испытывает сильный удар, за счет резко возросших токов статорной обмотки и кинетической энергии ротора. В результате этого возникает тормозящий момент, имеющий характер кратковременного импульса. Вследствие изложенного, большое внимание должно уделяться обеспечению механической прочности машины, прежде всего ее активной части.

Обмотки торцевого генератора, выполненные в виде обмоточных модулей, установленных в стеклотекстолитовые шаблоны, заливают компаундом, создавая изоляцию типа «монолит», улучшающую изоляционные свойства обмотки, чем создается механически прочная конструкция статора. Постоянные магниты ротора устанавливают в специальный шаблон, исключающий их взаимное перемещение, и закрывают полюсными наконечниками, закрепляемыми немагнитными винтами на диске ротора за пределами активной части. С учетом амплитуд знакопеременных моментов рассчитываются вал и подшипниковые щиты генератора.

Выводы

Разработанная на основе теории обобщенной электрической машины с применением полевой модели и магнитных схем замещения математическая модель переходных процессов нового НТСГ позволяет оценить величины переходных токов, существенно влияющие на работоспособность и надежность конструкции самого генератора, на выбор элементов системы управления режимами его работы.

- Сипайлов Г.А. Электрические машины (специальный курс). М.: Высш. шк., 1987. – 287 с.
- Осин И.Л. Синхронные электрические двигатели малой мощности. М.: Издательский дом МЭИ, 2006. 216 с.

Поступила 08.09.2012 г.