УДК 541.11:546.236/244

ТЕРМОХИМИЯ СЕЛЕНАТА И ТЕЛЛУРИТА МАГНИЯ-КАДМИЯ

К.Т. Рустембеков, А.Т. Дюсекеева

Карагандинский государственный университет им. Е.А. Букетова, Казахстан E-mail: rustembekov kt@mail.ru

С помощью метода динамической калориметрии в интервале 298,15...673 К исследована изобарная теплоемкость селената и теллурита магния¬кадмия. Выведены уравнения зависимости C_p⁰-f(T) и определены термодинамические функции. На зависимости C_p⁰-f(T) наблюдаются резкие аномальные скачки, связанные, вероятно, с фазовыми переходами II рода.

Ключевые слова:

Теплоемкость, термодинамические функции, селенат и теллурит магния-кадмия.

Key words:

Heat capacity, thermodynamic functions, magnesium-cadmium selenate and tellurite.

Перед современной неорганической химией поставлено немало задач как теоретического, так и прикладного характера. Среди них наиболее важными остаются проблема установления корреляции между составом, строением и свойствами веществ, а также закономерностей протекания процессов с участием сложных неорганических соединений; использование результатов целенаправленного исследования такого рода соединений для проведения неорганического синтеза; а также разработка новых методов извлечения индивидуальных соединений из многокомпонентного сырья. Все это позволяет не только расширять спектр знаний в отношении исследуемых соединений, но и предоставляет возможность проведения системного анализа, а также служит основанием для осуществления направленного синтеза или селективного извлечения новых неорганических соединений с заданными ценными физико-химическими свойствами.

С этой точки зрения всестороннее и систематическое исследование соединений на основе селена и теллура, обладающих такими физико-химическими свойствами как полупроводниковыми, сегнето- и пьезоэлектрическими, вызывают огромный интерес. Кроме того, исследования последних лет, проводимые в этой области химии, показали, что полинеорганические соединения, синтезированные на основе *s*-*d*-металлов и неметаллов вместе, с большей долей вероятности проявляют разнообразие в физико-химических свойствах. А полиселенит-(селенат)-ы, полителлуриты, а также двойные селенаты и теллуриты *s*-*d*-элементов, в этом отношении являются малоизученными соединениями. С учетом вышеизложенного, можно констатировать факт, что систематическое исследование методов синтеза, установление строения и изучение рентгенографических, термодинамических и электрофизических свойств полиселенит-(селенат)-ов, полителлуритов, а также двойных селенатов и теллуритов s-d-элементов представляют значительный как практический, так и теоретический интерес для неорганического материаловедения и составляют актуальную проблему современной неорганической химии.

В связи с этим нами проводятся систематические исследования по поиску и разработке научных основ направленного синтеза новых оксосоединений селена и теллура с уникальными электрофизическими свойствами [1, 2]. Современная термодинамическая информация новых сложных оксосоединений селена и теллура необходима для определения направления протекания реакций в этих системах для решения вопроса о возможности самопроизвольного протекания той или иной реакции в заданных условиях, определения значений констант равновесия, а также для решения ряда теоретических проблем, связанных с определением энергии и природы химической связи. Знание термодинамических свойств сложных оксосоединений необходимо также для создания информационного банка данных термодинамических величин, моделирования процессов синтеза новых веществ с заданными характеристиками и выявления фундаментальной зависимости «структура-энергетика-свойства» у синтезируемых вешеств.

Цель данной работы — исследование теплоемкости и термодинамических свойств двойных селената и теллурита магния—кадмия.

Исходными компонентами для синтеза двойного селената служили карбонаты магния, кадмия и 68%-я селеновая кислота марок «х.ч.» в стехиометрическом соотношении. Для синтеза двойного теллурита использовали оксид теллура (IV) марки «ос.ч.», оксид кадмия и карбонат магния квалификации «х.ч.». Методика синтезов аналогична приведенной в работах [3–5]. Образование равновесного состава и индивидуальность соединений контролировались с помощью методов рентгенофазового и химического анализов.

Рентгеновскую съемку образцов осуществляли на дифрактометре ДРОН-2,0 (СиК_а-излучение). Дифрактограммы порошков синтезированных соединений индицировали методом гомологии [6]. Корректность индицирования подтверждена близким совпадением экспериментальных и расчетных значений 10⁴/d² (табл. 1) и согласованностью рентгеновской и пикнометрической плотностей (табл. 2). Плотность соединений измеряли по методике [7] в стеклянном пикнометре объемом 1 мл. В качестве индифферентной жидкости выбран тетрабромэтан, так как он хорошо смачивает исследуемые вещества, а также химически инертен к ним и имеет малую зависимость плотности от температуры. Плотность соединений измеряли 5 раз.

Таблица 1. Индицирование рентгенограмм двойных селената и теллурита магния-кадмия

1/1 ₀ , %	d, Å	10⁴/₫ эксп.	hkl	10 ⁴ / <i>d</i> [₽] выч.			
MgCd (SeO ₄) ₂							
18	4,6589	461	111	456			
11	4,1494	581	201	578			
18	3,8687	668	230	672			
67	3,7920	695	320	709			
40	3,5357	800	031	794			
7	3,1279	1022	231	1022			
9	3,0736	1059	321	1059			
27	2,8321	1247	050	1235			
24	2,7920	1283	150	1291			
8	2,6140	1464	250	1462			
18	2,4893	1614	202	1628			
48	2,4609	1651	122	1654			
7	2,2034	2060	441	2051			
18	2,1709	2122	322	2110			
9	1,9491	2632	052	2635			
14	1,9029	2762	432	2755			
14	1,7690	3196	013	3199			
15	1,7278	3350	023	3348			
8	1,6783	3550	452	3546			
9	1,6189	3816	233	3822			
12	1,5293	4276	423	4259			
10	1,5133	4368	053	4383			
		MgCd(TeO ₃) ₂					
6	4,3060	539	102	523			
7	4,2260	560	201	566			
100	3,0931	1045	300	1045			
32	2,6786	1394	220	1393			
8	2,4791	1627	004	1627			
6	2,1264	2212	320	2206			
30	1,8945	2786	403	2773			
30	1,6163	3828	503	3818			
7	1,5476	4175	600	4180			
4	1,3398	5571	440	5573			
7	1,2292	6618	710	6618			
6	1,1988	6958	623	6952			

Как видно из данных табл. 1, величины экспериментальных и расчетных значений $10^4/d^e$, рентгеновской и пикнометрической плотностей (табл. 2) удовлетворительно согласуются между собой, что подтверждают достоверность и корректность результатов индицирования, а также позволяет утверждать, что соединение MgCd (SeO₄)₂ кристаллизуется в ромбической сингонии, а MgCd (TeO₃)₂ в гексагональной сингонии соответственно и имеют параметры элементарных ячеек, представленных в табл. 2.

Таблица 2. Типы сингонии и параметры элементарных ячеек синтезированных соединений

Соеди- нение	Тип синго-	Параметры решетки, Å		V⁰ _{яч.} , ų	Ζ	Плотность, г/см ³		
	нии	а	b	С			рент.	пикн.
MgCd (SeO ₄) ₂	ромб.	13,25	14,23	5,35	1000,7	4	3,98	3,87±0,11
MgCd (TeO ₃) ₂	гекса- гон.	9,28	-	9,92	734,69	6	4,05	3,96±0,10

На основании изложенного выше можно констатировать, что синтезированы новые двойные селенат и теллурит магния—кадмия. Рентгенографически определены типы их сингонии и параметры элементарных ячеек.

Теплоемкость соединений исследовали методом динамической калориметрии [1–5] на серийном приборе ИТ-С-400 в интервале температур 298,15...673 К (табл. 3).

Таблица 3. Экспериментальные данные по удельной и мольной теплоемкостям синтезированных соединений

Т, К	$C_p \pm \overline{\delta},$ Лж/(г-К)	<i>С_р⁰±Å,</i> Лж/(моль·К)	Т, К	$C_p \pm \overline{\delta},$ Лж/(г-К)	$C_p^0 \pm \mathring{\Delta},$ Лж/(моль-К)			
MgCd (SeO ₄) ₂								
298,15	0,5468±0,0168	231±20	498	0,9088±0,0062	384±7			
323	0,6106±0,0066	258±8	523	0,8382±0,0063	354±7			
348	0,7303±0,0069	309±8	548	0,7688±0,0063	325±7			
373	0,5983±0,0058	253±7	573	0,7262±0,0101	307±12			
398	0,7375±0,0056	312±7	598	0,9026±0,0077	381±9			
423	0,8694±0,0060	367±7	623	0,9961±0,0066	421±8			
448	0,9541±0,0069	403±8	648	1,1039±0,0073	467±9			
473	1,0159±0,0076	429±9	673	1,1870±0,0074	502±9			
	•	MgCd(1	ГeO₃)	2				
298,15	0,3144±0,0082	153±11	498	0,5853±0,0031	286±4			
323	0,3745±0,0067	184±9	523	0,5882±0,0061	287±8			
348	0,4159±0,0044	203±6	548	0,5134±0,0049	251±7			
373	0,4609±0,0045	225±6	573	0,4368±0,0031	213±4			
398	0,4991±0,0028	244±4	598	0,4822±0,0022	235±3			
423	0,5322±0,0047	260±6	623	0,5399±0,0115	263±16			
448	0,5535±0,0044	270±6	648	0,5833±0,0035	285±5			
473	0,5734±0,0071	280±10	673	0,6140±0,0081	300±11			

При каждой температуре для усредненных значений удельной теплоемкости проводили оценку среднеквадратичного отклонения $\overline{\delta}$, а для мольной теплоемкости вычисляли случайную составляющую погрешности Δ [5]. Проверку работы калориметра проводили измерением теплоемкости α -Al₂O₃. Найденное опытным путем значение C_p^0 (298,15) α -Al₂O₃ составило 76,0 Дж/(моль·К), что вполне удовлетворяет справочному (79,0 Дж/(моль·К)) [8].

При исследовании зависимости теплоемкостей соединений от температуры при 348 и 473 К у MgCd (SeO₄)₂ и при 523 К у MgCd (TeO₃)₂ обнаружены резкие аномальные λ -образные скачки, связанные, вероятно, с фазовыми переходами II рода. Эти переходы могут быть связаны с катионным перераспределением, с изменением коэффициента термического расширения и изменением магнитного момента синтезированных соединений (рисунок).

Рисунок. Температурная зависимость теплоемкостей: a) MgCd (SeO₄)₂; б) MgCd (TeO₃)₂

На основании экспериментальных данных (табл. 3), с учетом температур фазовых переходов II рода выведены уравнения температурной зависимости теплоемкостей соединений (табл. 4). Для определения погрешности коэффициентов в уравнениях зависимостей $C_p^0 \sim f(T)$ использовали величины средних случайных погрешностей для рассматриваемых интервалов температур.

Таблица 4. Уравнения температурной зависимости теплоемкостей MgCd (SeO₄)₂ и MgCd (TeO₃)₂ в интервале 298,15 ... 673 К

6	Коэффициен			
Соедине-		ΔT , K		
	а	<i>b</i> •10⁻³	<i>c</i> •10⁵	
MgCd (SeO ₄) ₂	-231,1±6,2	1551,0±41,7	-	298348
	1085,1±29,2 -2231,2±60,0		-	348373
	1495,7±40,2	-1217,5±32,8	-1097,3±29,5	373473
	-520,6±14,0	718,9±19,3	1364,6±36,7	473573
	1792,6±48,2	-830,6±22,3	-3315,4±89,2	573673
MgCd (TeO ₃) ₂	394,7±12,2	-68,9±2,1	196,0±6,0	298523
	641,0±19,7	676,9±20,9	-	523573
	818,4±25,2	-310,6±9,6	-1402,9±43,2	573673

На основании известных соотношений и значений коэффициентов из уравнений температурной зависимости теплоемкостей соединений были рассчитаны термодинамические функции $C_p^{0}(T)$, $S^{0}(T)$, $H^{0}(T)-H^{0}(298,15)$, $\Phi^{xx}(T)$. Полученные результаты приведены в табл. 5.

Для всех значений теплоемкости и энтальпии во всем интервале температур оценили средние случайные составляющие погрешности, а для значений энтропии и приведенного термодинамического потенциала в оценку погрешности включили точность расчета энтропии (±3 %). Значения стандартных энтропий были оценены методом ионных энтропийных инкрементов В.Н. Кумока [9].

Результаты исследований могут представлять интерес для направленного синтеза халькогенатов и халькогенитов с заданными свойствами, физикохимического моделирования химических и металлургических процессов с участием соединений селена и теллура, а также могут служить исходными данными для фундаментальных справочников и информационных банков по термодинамическим константам неорганических веществ.

Таблица 5. Термодинамические функции MgCd (SeO₄)₂ и MgCd (TeO₃)₂ в интервале 298,15...673 К

Т, К	$C_{\rho}^{0}(T)\pm \mathring{\Delta},$	$S^{\circ}(T) \pm \mathring{\Delta},$	$H^{\circ}(T) - H^{\circ}(298, 15) \pm \mathring{\Delta},$	$\Phi^{xx}(T)\pm\mathring{\Delta},$		
	Дж/(моль∙к)	дж/(моль-к)	Дж/моль	дж/(моль∙к)		
MgCd (SeO ₄) ₂						
298,15	231±6	237±7	-	237±13		
300	234±6	238±14	465±13	237±13		
325	273±7	259±15	6805±183	238±14		
350	312±8	280±16	14114±380	240±14		
375	248±7	299±17	21021±565	243±14		
400	323±9	318±18	28330±762	247±14		
425	371±10	339±19	37030±996	252±14		
450	406±11	362±21	46762±1258	258±15		
475	431±12	384±22	57242±1540	264±15		
500	385±10	405±23	67352±1812	270±15		
525	352±9	423±24	76543±2059	277±16		
550	326±9	439±25	85002±2287	284±16		
575	305±8	453±26	92883±2499	291±17		
600	373±10	467±27	101475±2730	298±17		
625	425±11	484±28	111469±2999	305±17		
650	468±13	501±29	122645±3299	313±18		
675	504±14	520±30	134812±3626	320±18		
		MgCd	(TeO ₃) ₂			
298,15	155±5	247±7	-	247±15		
300	156±5	248±15	310±10	247±15		
325	188±6	262±16	4611±142	248±15		
350	211±6	277±17	9588±295	249±15		
375	230±7	292±18	15096±465	252±15		
400	245±8	307±19	21028±648	255±15		
425	258±8	323±20	27302±841	258±16		
450	268±8	338±21	33852±1043	262±16		
475	276±8	352±21	40629±1251	267±16		
500	282±9	366±22	47593±1466	271±16		
525	287±9	380±23	54710±1685	276±17		
550	269±8	393±24	61638±1898	281±17		
575	252±8	405±25	68144±2099	286±17		
600	241±7	415±25	73876±2275	291±18		
625	265±8	425±26	80226±2471	297±18		
650	284±9	436±26	87102±2683	302±18		
675	301±9	447±27	94424±2908	307±19		
600	309±11	473±31	81754±2870	337±22		
625	322±11	486±32	89651±3147	343±22		
650	333±12	499±32	97846±3434	349±23		

Выводы

Из карбонатов магния, кадмия и селеновой кислоты жидко-твердофазным способом синтезирован селенат и керамической технологией из оксидов теллура (IV), кадмия и карбоната магния синтезирован теллурит магния—кадмия. Рентгенографически определены типы их сингонии и параметры элементарных ячеек.

Методом динамической калориметрии в интервале 298,15...673 К исследована изобарная теплоем-

СПИСОК ЛИТЕРАТУРЫ

- Дюсеекева А.Т. Синтез и свойства двойных селенатов, теллуритов некоторых d-элементов: автореф. дис. ... канд. хим. наук. – Караганда, 2008. – 19 с.
- Рустембеков К.Т., Дюсекеева А.Т. Синтез и термохимия селенатов некоторых s-d-элементов // Вестник Карагандинского государственного университета им. Е.А. Букетова. Сер. Химия. 2010. № 1 (57). С. 39–45.
- Рустембеков К.Т., Дюсекеева А.Т., Шарипова З.М., Жумадилов Е.К. Рентгенографические, термодинамические и электрофизические свойства двойного теллурита натрия-цинка // Известия Томского политехнического университета. – 2009. – Т. 315. – № 3. – С. 16–19.
- Рустембеков К.Т., Дюсекеева А.Т. Калориметрия и электрофизические свойства селената Na₂Cd (SeO₄)₂ // Известия Томского политехнического университета. – 2009. – Т. 315. – № 3. – С. 20–22.

кость двойных селената и теллурита магния—кадмия. Выведены уравнения зависимости $C_p^0 \sim f(T)$, и определены термодинамические функции. На кривой $C_p^0 \sim f(T)$ при 348 и 473 К у MgCd (SeO₄)₂ и при 523 К у MgCd (TeO₃)₂ обнаружены резкие аномальные скачки, связанные, вероятно, с фазовыми переходами II рода. Наличие фазового перехода II рода на кривой теплоемкости дает возможность предположить, что данные соединения могут обладать уникальными электрофизическими свойствами.

- Рустембеков К.Т. Теплоемкость и термодинамические функции теллурита кальция-кадмия в интервале 298,15...673 К // Известия Томского политехнического университета. – 2010. – Т. 317. – № 2. – С. 144–146.
- Ковба Л.М., Трунов В.К. Рентгенофазовый анализ. М.: Издво МГУ, 1976. – 256 с.
- Кивилис С.С. Техника измерений плотности жидкостей и твердых тел. – М.: Стандартгиз, 1959. – 191 с.
- Robie R.A., Hewingway B.S., Fisher J.K. Thermodinamic Properties of Minerals and Ralated Substances at 298.15 and (10⁵ Paskals) Pressure and at Higher Temperatures. – Washington: US Government Printing Office, 1978. – 456 p.
- Кумок В.Н. Прямые и обратные задачи химической термодинамики. – Новосибирск: Наука, 1987. – 144 с..

Поступила 13.04.2012 г.