УДК 665.752:665.658.2 DOI: 10.18799/24131830/2025/3/4895 Шифр специальности ВАК: 2.6.12

Прогнозирование работы промышленной установки гидроочистки вакуумного дистиллята с применением математической модели

С.Б. Аркенова[⊠], Е.Н. Ивашкина, Е.Ф. Гриценко

Национальный исследовательский Томский политехнический университет, Россия, г. Томск

[⊠]sba5@tpu.ru

Аннотация. Актуальность. Современные тенденции в переработке тяжелой нефти с высоким содержанием серы и ужесточение экологических требований к топливу приводят к необходимости проведения очистки углеводородного сырья от вредных компонентов, таких как сера. Одним из процессов облагораживания средних и тяжелых фракций нефти является гидроочистка. Из-за высокой значимости процесса гидроочистки в современной нефтепереработке применение математических моделей имеет критически важное значение при проектировании новых установок, оптимизации работы действующих, а также при разработке катализаторов. Цель. Настоящая работа посвящена прогнозированию работы промышленной установки гидроочистки вакуумного газойля при изменении состава сырья и основных управляющих параметров с применением математической модели. Методы. Метод жидкостноадсорбционной хроматографии на установке «Градиент М» для определения состава вакуумного газойля, метод газожидкостной хроматографии с применением хроматографа «Кристалл 2000 М» для определения содержания серосодержащих соединений в вакуумном газойле, метод криоскопии в бензоле для определения молекулярной массы, метод энергодисперсионной рентгенофлуорисцентной спектрометрии для определения общей серы в вакуумном газойле, пикнометрический метод для измерения плотности, квантово-химический метод исследования, реализованный в программе Gaussian, для определения термодинамических характеристик реакций, метод математического моделирования химико-технологических процессов. Результаты. Предложена 12-компонентная математическая модель процесса гидроочистки вакуумного дистиллята, которая учитывает большинство реакций гидрогенолиза, гидрирования и гидрокрекинга гетероорганических соединений, массоперенос газ-жидкость и жидкость-твердое тело, а также влияние дезактивации катализатора коксом на его активность. По результатам расчетов, выполненных с использованием математической модели, можно сделать вывод о том, что модель процесса гидрооблагораживания вакуумного газойля достоверно воспроизводит зависимости остаточного содержания серы в продукте от изменений основных управляющих параметров работы промышленной установки гидроочистки вакуумного дистиллята.

Ключевые слова: гидроочистка, вакуумный газойль, математическое моделирование, реактор со стационарным слоем катализатора, термодинамика

Для цитирования: Аркенова С.Б., Ивашкина Е.Н., Гриценко Е.Ф. Прогнозирование работы промышленной установки гидроочистки вакуумного дистиллята с применением математической модели // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2025. – Т. 336. – № 3. – С. 183–192. DOI: 10.18799/24131830/2025/3/4895

UDC 665.752:665.658.2 DOI: 10.18799/24131830/2025/3/4895

Forecasting the operation of an industrial vacuum distillate hydrotreating unit using a mathematical model

S.B. Arkenova[⊠], E.N. Ivashkina, E.F. Gritsenko

National Research Tomsk Polytechnic University, Tomsk, Russian Federation

[⊠]sba5@tpu.ru

Abstract. *Relevance.* Current trends in processing heavy oil with high sulfur content and tightening environmental fuel requirements necessitate hydrocarbon feedstock purification from harmful components such as sulfur. One of the processes

for upgrading medium and heavy oil fractions is hydrotreating. Due to the high importance of the hydrotreating in modern oil refining, the use of mathematical models is critically important in the design of new units, optimization of existing ones, and development of catalysts. Aim. This work is devoted to forecasting the operation of an industrial vacuum gas oil hydrotreating unit with a change in the composition of the feedstock and the main control parameters using a mathematical model. *Methods.* Liquid adsorption chromatography method using the Gradient M unit to determine the composition of vacuum gas oil, gas-liquid chromatography method using the Crystal 2000 M chromatograph to determine the content of sulfur-containing compounds in vacuum gas oil, cryoscopy method in benzene to determine the molecular weight, energydispersive X-ray fluorescence spectrometry method to determine total sulfur in vacuum gas oil, pycnometer method for measuring density, quantum chemical research method implemented in the Gaussian program for determining the thermodynamic characteristics of reactions, method of mathematical modeling of chemical-engineering processes **Results**. The authors have proposed a 12-component mathematical model of the vacuum distillate hydrotreating. The model takes into account most of the reactions of hydrogenolysis, hydrogenation and hydrocracking of heteroorganic compounds, gasliquid and liquid-solid mass transfer, as well as the effect of catalyst deactivation with coke on its activity. Based on the results of calculations performed using the mathematical model, it can be concluded that the model of the vacuum gas oil hydrotreating reliably reproduces the dependence of the residual sulfur content in the product on changes in the main control parameters of the industrial vacuum distillate hydrotreating unit.

Keywords: hydrotreating, vacuum gas oil, mathematical modeling, fixed bed reactor, thermodynamics

For citation: Arkenova S.B., Ivashkina E.N., Gritsenko E.F. Forecasting the operation of an industrial vacuum distillate hydrotreating unit using a mathematical model. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2025, vol. 336, no. 3, pp. 183–192. DOI: 10.18799/24131830/2025/3/4895

Введение

Мировое потребление легких и средних дистиллятов растет каждое десятилетие. С 2010 по 2020 гг. среднегодовые темпы роста производства средних дистиллятов составляют 1,6 % в год, что выше общего роста спроса на нефть [1]. В настоящее время более половины мировых запасов нефти (~53,3 %) находится в форме тяжелой, сверхтяжелой нефти, битума и горючих сланцев [2]. В них содержится множество гетероатомов, таких как сера и азот. Кроме того, отмечается высокая коксуемость, а также присутствие асфальтенов и различных металлических примесей, таких как Ni, V и Fe, которые негативно влияют на процессы переработки, а также на качество получаемых нефтепродуктов [3].

Соединения серы и азота выступают ядами для большинства катализаторов нефтепереработки, интенсифицируют процессы коррозии оборудования. Меркаптаны и другие соединения серы характеризуются высокой токсичностью и летучестью, обладают резким, неприятным запахом. Смолистоасфальтеновые вещества оказывают существенное влияние на технологические и потребительские характеристики нефти и нефтепродуктов. При высоких температурах они накапливаются в порах катализатора, образуя кокс, что существенно снижает выход основных продуктов вторичных процессов переработки нефти [4, 5].

Что касается негативного воздействия на окружающую среду, экологическое сообщество требует от нефтеперерабатывающих заводов производить более чистое топливо, ограничивая общее содержание серы в бензине и дизельном топливе класса 5 до 10 ppm. Такие условия вынуждают нефтеперерабатывающие заводы (НПЗ) включать в производственные цепочки обязательные стадии гидрооблагораживания сырья [6, 7].

Так, на многих НПЗ совместно с процессом каталитического крекинга осуществляется гидроочистка вакуумного газойля, выступающего сырьем для получения ценных нефтехимических газов и бензина. Реакции гидрообессеривания, гидроденитрогенизации, гидродеоксигенации, гидродеароматизации и гидродеметаллизации протекают одновременно в условиях гетерофазного катализа в среде водорода. Эффективность процесса гидроочистки зависит от многочисленных факторов, таких как температура, давление, объемная скорость и соотношение H₂/сырье и др. Каждая переменная по-своему влияет на процесс, но свойства исходного потока и требуемое качество продукта определяют их значение [7].

Модели многофазных реакторов являются важным инструментом оценки их производительности и подбора оптимальной конструкции. Однако разработка подробных моделей, включающих описание кинетической, термодинамической и гидродинамической составляющих, остается сложной задачей в связи с необходимостью определения и учета большого числа параметров [8–17].

В настоящей работе приводятся результаты разработки математической модели гетерофазного процесса гидроочистки вакуумного газойля и использования ее в качестве инструмента прогнозирования работы промышленной установки гидроочистки вакуумного дистиллята.

Объекты и методы исследования

Объектом исследования является промышленная установка гидроочистки вакуумного газойля

(ВГО) с неподвижным слоем катализатора. Реактор представляет собой емкостной цилиндрический аппарат длиной 14,8 м (длина активной части реактора) и диаметром 3,56 м, в котором поток углеводородного сырья, смешанного с водородсодержащим газом (ВСГ), поступает через верхнюю часть реактора. Газожидкостный поток протекает сверху вниз через слои катализатора, где происходят химические реакции, в результате которых увеличивается температура слоя реактора и потока ВГО, смешанного с ВСГ. Целевым продуктом гидроочистки является очищенный от примесей вакуумный дистиллят. В потоке продуктов также присутствуют образующиеся в результате реакций газы: сероводород и аммиак. Гидроочистка ВГО проводится в относительно мягких условиях эксплуатации: температура 330-380 °С, давление 3,8-4,3 МПа, объемная скорость сырья 0,8-1,2 ч⁻¹. Материальный баланс установки гидроочистки ВГО представлен в табл. 1.

Образцы сырья и продуктов процесса гидроочистки были проанализированы в лаборатории Томского политехнического университета (в работе применялось оборудование ЦКП НМНТ ТПУ»). Определение количественного группового состава тяжелых нефтяных фракций было выполнено методом жидкостно-адсорбционной хроматографии с градиентным вытеснением на хроматографе «Градиент М» с детектором по теплопроводности. Для анализа использовалась колонка 300×1,2 мм, в качестве адсорбента использован силикагель АСКГ фракции <100 мкм, элюентом являлась смесь растворителей, приготовленная в соответствии с документацией прибора. Определение общего содержания серы выполнено с использованием прибора «Спектроскан S» согласно ГОСТ Р 51947-2002 (диапазон показаний массовой доли серы 0,0007-5,0 %). Анализ сернистых соединений проведен методом газожидкостной хроматографии на хроматографе «Кристалл 2000 М» с использованием пламенно-фотометрического детектора (капиллярная колонка SE-54 25м×0,22 мм, газ-носитель - гелий). Линейное повышение температуры составляло 50-290 °C, скорость нагрева колонки – 4 °С/мин. Определение молекулярной массы выполнено с использованием прибора Крион-1 (точность температурных измерений составляет 0,001 °C, показатель точности ±9 %). Плотность сырья и продуктов процесса гидроочистки определена в соответствии с ГОСТ 3900-85.

Результаты лабораторных исследований представлены в табл. 2, 3.

 Таблица 1.
 Материальный баланс установки гидроочистки вакуумного газойля

 Table 1.
 Material balance of the vacuum gas oil hydrotreating unit

	,	0 9	0					
Материальный баланс, мас. %/Material balance, wt %								
Поступило	Получено							
Received	Obtained							
Вакуумный	Углеводородные	Нестабильный	Лизальное топлиро	Гидроочищенный	Сероводород			
дистиллят	газы	бензин	Diesel fuel	вакуумный газойль	Hydrogen			
Vacuum distillate	Hydrocarbon gases	Unstable gasoline	Dieser führ	Hydrotreated vacuum gas oil	sulfide			
100	0,50-0,73	0,65-1,27	16,90-23,00	73,88-80,61	1,51–1,71			

Таблица 2. Характеристика вакуумного газойля до и после гидроочистки

Table 2.Characteristic of vacuum gas of	oil before and after hydrotreating
---	------------------------------------

Показатели Parameters	До гидроочистки Before hydrotreating	После гидроочистки After hydrotreating
Плотность при 20 °C, г/см ^{3/} Density at 20°C, g/cm ³	897–908,5	882,3-892,6
Средняя молекулярная масса, г/моль Average molecular weight, g/mol	307-349	331-378
Содержание серы, мас. %/Sulfur content, wt %	1,589–1,797	0,121-0,126
Содержание азота, мас. %*/Nitrogen content, wt %*	0,06-0,13	0,05-0,12
Групповой состав, мас. %/Group composition, wt %		
предельные УB/ultimate hydrocarbon	54,8-62,8	67–72,2
моноароматические УВ/monoaromatic hydrocarbons	10,2–12,1	14,9–19
диароматические УB/diaromatic hydrocarbons	4,3-8	3,9-5,9
полиароматические УВ/polyaromatic hydrocarbons	16-23,7	6,8-8,6
смолы/resins	2,2-5,2	1,5–2,8
Фракционный состав/Fractional composition, °C*		
н.к./b.b.	227-255	308-321
5 %	276-301	340-351
10 %	304-332	355-367
50 %	400-416	417-421
90 %	488-494	487-490
95 %	506-518	510-513
к.к./е.b.	528-541	530-535

*данные НПЗ/refinery data.

Table 3. Sulfur-containing compounds in vacuum gas oil	1	
Coordinate (Compound	Содержание S в соединении, мас. % S content of the compound, wt %	
Соединение/сотронна	До гидроочистки Before hydrotreating	После гидроочистки After hydrotreating
Тиофены/Thiophenes	0	0
ΣC_0 -BT/ ΣC_0 -BT	0	0
ΣC_1 -BT/ ΣC_1 -BT	0	0
ΣC_2 -BT/ ΣC_2 -BT	0,0002-0,0067	0
ΣC_3 -BT/ ΣC_3 -BT	0,0038-0,0431	0
ΣC_4 -BT/ ΣC_4 -BT	0,0233-0,1422	0
ΣC ₅₋₆ -BT/ΣC ₅₋₆ -BT	0,0726-0,2566	0
∑C₀-ДБТ/∑C₀-DBT	0,0183-0,0829	0
∑С₁-ДБТ/∑С₁-DВТ	0,1596-0,2698	0,0023-0,0184
∑С₂-ДБТ/∑С₂-DВТ	0,3251-0,3894	0,0142-0,0427
<u>∑С₃-₄-ДБТ/∑С₃-₄-DBT</u>	0,1568-0,4058	0,0262-0,0377
∑Неидентифицированные/∑Unidentified	0,4919-0,6358	0,04-0,0833
Bcero/Total	1,589–1,797	0,1214-0,126

Таблица 3. Серосодержащие соединения в вакуумном газойле

В результате составлен список соединений, содержащихся в сырье и продуктах. Полученный список включает в себя 9 псевдокомпонентов для сырья, для продуктов 12 псевдокомпонентов. Далее был составлен перечень теоретически возможных реакций для выбранных углеводородов. Основываясь на представлениях о механизме превращения углеводородов на катализаторах гидроочистки, были рассмотрены следующие типы реакций: гидрообессеривание, гидродеазотирование, гидроароматизация, поликонденсации смол. Численные исследования термодинамических закономерностей процесса гидроочистки проводили с помощью программного пакета Gaussian в рамках теории функционала плотности (density functional theory – DFT) на уровне B3LYP, базисный набор 3-21G. Так был осуществлен расчет энтропии и энтальпии теоретически возможных реакций, протекающих на катализаторах и при условиях проведения процесса гидроочистки в промышленности.

Результаты расчетов реакций гидрообессеривания показали, что увеличение температуры приводит к росту термодинамической вероятности протекания реакций в случае с сульфидами, что выражается в уменьшении значений свободной энергии Гиббса с -137,32 до -140,25 кДж/моль. При гидрировании бензотиофена и дибензотиофена наблюдается снижение термодинамической вероятности протекания реакций на 8,27 кДж/моль (с -113,53 до -105,26 кДж/моль) и 2,65 кДж/моль (с -42,39 до -39,74 кДж/моль) соответственно. С увеличением температуры в реакциях гидрирования ароматических соединений отмечается тенденция к снижению термодинамической вероятности протекания реакций: с -13,14 до -6,89 кДж/моль в случае с полиароматическими соединениями, с -28,65 до 10,40 кДж/моль с диароматическими соединениями, с -45,99 до -26,68 кДж/моль с моноароматическими соединениями. Термодинамическая вероятность реакций гидродеазотирования с повышением температуры снижается, что отражается в увеличении значения энергии Гиббса с –106,51 до – 61,36 кДж/моль. При этом усложнение структуры азотсодержащего соединения также приводит к еще большему уменьшению вероятности протекания реакции гидродеазотирования.

На основании полученных результатов была составлена формализованная схема превращений, согласно которой реализована кинетическая модель процесса (рис. 1).

Рис. 1. Формализованная схема превращений в процессе гидроочистки вакуумного газойля

Моделирование кинетики реакций основано на решении системы дифференциальных уравнений с учетом наличия трех фаз: газообразной, жидкой и твердой [18]. Предполагается, что в объеме реактора преимущественно находится газовая фаза, а жидкость образует тонкую пленку вокруг зерна катализатора. Таким образом энергия переносится из газовой фазы в твердую фазу, проходя через жидкую фазу, и наоборот, когда происходит реакция. Дифференциальные уравнения изменения концентраций компонентов имеют следующий вид (1)–(3):

$$u_G \frac{\partial p_i}{\partial l} = -R \cdot T_G \cdot k_i^L a_L \left(\frac{p_i}{H_i} - C_i^L\right), \qquad (1)$$

$$u_L \frac{\partial C_i^L}{\partial l} = k_i^L a_L \left(\frac{p_i}{H_i} - C_i^L\right) - k_i^S a_S (C_i^L - C_i^S) , \qquad (2)$$

$$\frac{\partial c_i^S}{\partial t} = k_i^S a_s \left(\overline{C_i^L} - C_i^S \right) + \sum W_i , \qquad (3)$$

где u_j – скорость *j*-фазы, м/с; p_i – парциальное давление *i*-компонента в газовой фазе, МПа; R – универсальная газовая постоянная, Дж/моль-К; T_j – температура *j*-фазы, К; *t* – время, с; *l* – координата вдоль реактора, м; C_i^j – концентрация *i*-компонента В *j*-фазе, моль/м³; H_i – постоянная Генри *i*-компонента МПа·м³/моль; $\overline{C_i^L}$ – средняя концентрация компонентов в жидкой фазе, моль/м³; $k_i^j a_j$ – коэффициент массопереноса компонентов между фазами, с⁻¹; ΣW_i – сумма скоростей химических реакций.

Снижение качества продуктов вызвано дезактивацией катализатора и должно быть учтено. Учет дезактивации катализатора коксом описывается, как показано в уравнениях (4), (5):

$$A = f\left(C_{[\text{KOKC}]}\right),\tag{4}$$

$$W_j = A_j \cdot K_j \cdot \prod C_i^s , \qquad (5)$$

где A – относительная активность катализатора; K – константа скорости реакции; C_i^s – концентрация *i*-компонента в твердой фазе, моль/м³.

В данной системе дифференциальных уравнений расчеты изменения концентраций веществ в газовой и жидкой фазах происходят по высоте слоя катализатора, а в твердой фазе, в объеме катализатора, концентрация изменяется во времени вследствие массопереноса и химических реакций, при этом для расчета массопереноса используется значение средней концентрации компонентов в жидкой фазе $\overline{C_L}^L$.

Для решения системы использовался метод backward differentiation formula – BDF. Корреляции для определения свойств вакуумного газойля в условиях процесса, растворимости газа и коэффициентов массопередачи на границах раздела газжидкость и жидкость-твердое тело, которые используются в уравнениях модели, взяты из литературы [18–30]. В табл. 4 представлены кинетические параметры основных реакций.

Результаты исследования и их обсуждение

В литературе представлены кинетические модели процесса гидроочистки тяжелого нефтяного сырья с разной степенью формализации [21–28].

Кинетическая модель, разработанная в ходе настоящих исследований, имеет сравнимую с более детализованными моделями степень адекватности и в то же время позволяет проводить прогностические расчеты по оценке показателей работы промышленного реактора гидроочистки.

- Таблица 4. Кинетические параметры основных реакций гидроочистки вакуумного газойля
- Table 4.
 Kinetic parameters of the main hydrotreating reactions of vacuum gas oil

Реакция/Reaction	Предэкспо- ненциальный множитель Pre-exponential factor	Ea, кДж/моль kJ/mol	
Сульфиды+2Н₂→			
Насыщенные УВ+Н₂S	5,54E+09	130,10	
Sulfides+2H ₂ →			
Saturated HCs+H ₂ S			
Бензотиофены+2H₂→			
МоноароматическиеУВ+H ₂ S	1,57E+11	152,99	
Benzothiophenes+2H ₂ →Monoaro			
matic HCs+H ₂ S			
Дибензотиофены+2Н₂→			
ДиароматическиеУВ+H ₂ S	1.005+11	152.00	
Dibenzothiophenes+ $2H_2 \rightarrow$	1,001+11	152,77	
Diaromatic HCs+H ₂ S			
Азотсодержащие УВ+9Н₂→			
Насыщенные УВ+NH ₃	4 94F±11	164,94	
Nitrogen-containing	4,746111		
HCs+9H ₂ →Saturated HCs+NH ₃			
Моноароматические УВ+3H₂→			
Насыщенные УВ	2175-07	103 10	
Monoaromatic HCs+3H ₂ \rightarrow	5,171+07	105,10	
Saturated HCs			
Диароматические УВ+2Н₂→			
Моноароматические УВ	1 78F+07	98,39	
Diaromatic HCs+2H ₂ \rightarrow	1,701107		
Monoaromatic HCs			
Полиароматические УВ+2H₂→			
Диароматические УВ	3,38E+09	126 39	
Polyaromatic $HCs+2H_2 \rightarrow$		120,37	
Diaromatic HCs			
Смолы+2Н₂→			
Полиароматические УВ	1,78E+06	129,39	
Resins+2H ₂ \rightarrow Polyaromatic HCs			
Смолы→Кокс+4Н₂	1 93E-03	204 20	
Resins→Coke+4H ₂	1,751 05	201,20	

Температура является основным управляющим параметром процесса гидроочистки в силу ее значительного влияния на скорость всех реакций, как целевых, так и побочных. Результаты расчетов, представленные на рис. 2–4, позволяют проанализировать влияние температуры на качество продукта и содержание примесей.

Согласно расчетным данным, увеличение температуры в реакторе с 340 до 380 °С приводит к значительному снижению содержания серы в продукте. При изменении концентрации серы в исходном сырье от 1 до 2,2 % массовая доля серы в продукте составляет 0,07–0,17 % при 340 °С и снижается до 0–0,10 % при температуре 380 °С (рис. 2). Такая тенденция обусловлена повышением скорости реакции десульфуризации. Сырье с большей исходной сернистостью требует более высоких температур для достижения низкого уровня остаточной серы в продукте. Так, для сырья с содержанием серы 1 мас. % при температуре 360 °С удается достичь уровня остаточной серы менее 0,04 мас. %, в то время как для сырья с содержанием серы 1,9 мас. % при температуре 375 °C содержание серы в продукте остается выше – около 0,07 мас. %.

Рис. 2. Зависимость содержания серы в продукте от температуры и содержания серы в сырье (T – 340–380 °C, p – 4 МПа, Q сырья – 120 м³/ч, Q водорода – 82000 нм³/ч)

Fig. 2. Dependence of sulfur content in the product on temperature and sulfur content in the feedstock (T - 340-380°C, p - 4 MPa, feed rate - 120 m³/h, hydrogen flow rate - 82000 Nm³/h)

Содержание азота в сырье варьируется в диапазоне 600–1000 ppm и снижается при увеличении температуры процесса гидроочистки. Как показано на рис. 3, повышение температуры с 340 до 380 °C приводит к снижению массовой доли азота в продукте на 140–220 ppm, что объясняется ускорением реакций гидродеазотирования.

Рис. 3. Зависимость содержания азота в продукте от температуры и содержания азота в сырье (T – 340–380 °C, p – 4 МПа, Q сырья – 120 м³/ч, Q водорода – 82000 нм³/ч)

Fig. 3. Dependence of nitrogen content in the product on temperature and nitrogen content in the feedstock (T - 340-380°C, p - 4 MPa, feed rate - 120 m³/h, hydrogen flow rate - 82000 Nm³/h)

Одним из факторов, влияющих на скорость и степень удаления азота, является исходная концентрация азота в сырье. Чем выше исходное содержание азота, тем больше остаточная концентрация азота в продукте при одинаковой температуре. Так, при температуре 370 °C содержание азота в продукте для сырья с 600 ppm составляет около 490 ppm, в то время как для сырья с 1000 ppm оно достигает 800 ppm. Это связано с тем, что при высоких концентрациях не все азотсодержащие соединения успевают прореагировать в ходе гидроочистки, а также с наличием веществ с низкой реакционной способностью в отношении гидрогенолиза.

Результаты, представленные на рис. 4, показывают снижение массовой доли ароматических углеводородов в продукте при увеличении температуры с 340 до 380 °C. Для сырья с концентрацией аренов 30–45 % массовая доля этих соединений в продукте уменьшается на 12–15 % за счет протекания реакций насыщения ароматических углеводородов до нафтеновых соединений.

Fig. 4. Dependence of arene content in the product on temperature and arene content in the feedstock $(T - 340-380^{\circ}C, p - 4 MPa, feed rate - 120 m³/h,$ hydrogen flow rate - 82000 Nm³/h)

Таким образом, полученные зависимости позволяют прогнозировать температурный режим работы реактора для достижения требуемой степени обессеривания. Однако стоит учитывать, что при температуре свыше 400 °C увеличивается выход побочных продуктов за счет интенсификации реакций гидрокрекинга и коксообразования.

На рис. 5–7 представлено содержание серы, азота и ароматических углеводородов в продукте от расхода сырья.

Увеличение расхода сырья напрямую приводит к повышению содержания серы в конечном продукте. При расходе от 100 до 150 м³/ч степень очистки снижается на 3–6 % по сере в силу снижения времени контакты сырья и катализатора.

Рис. 5. Зависимость содержания серы в продукте от расхода сырья и содержания серы в сырье (T – 350 °C, p – 4 МПа, Q сырья – 110–150 м³/ч, Q водорода – 82000 нм³/ч)

Fig. 5. Dependence of sulfur content in the product on feed rate and sulfur content in the feedstock ($T - 350^{\circ}C$, p - 4 MPa, feed rate - 110-150 m³/h, hydrogen flow rate - 82000 Nm³/h)

На рис. 6 представлена зависимость содержания азота в продукте от расхода сырья при различных концентрациях азота в сырье. Линии, соответствующие значениям концентрации азота 600, 700, 780 и 880 ррт, имеют схожие тренды: остаточное содержание азота в продукте увеличивается с ростом расхода сырья. Вместе с тем чем выше исходное содержание азота в сырье, тем больше его содержание в конечном продукте при одинаковых условиях. Так, при увеличении расхода сырья с 100 до 150 м³/ч степень очистки снижается на 8–11 % по азоту.

Рис. 6. Зависимость содержания азота в продукте от расхода сырья и содержания азота в сырье (T – 350 °C, p – 4 МПа, Q сырья – 100–150 м³/ч, Q водорода – 82000 нм³/ч)

Fig. 6. Dependence of nitrogen content in the product on feed rate and nitrogen content in the feedstock (T - 350°C, p - 4 MPa, feed rate - 100-150 m³/h, hydrogen flow rate - 82000 Nm³/h)

Расчеты по модели демонстрируют, что при исходной концентрации аренов в сырье 30 мас. % их остаточное содержание в продукте составляет около 19 мас. % при расходе сырья 100 м³/ч. С ростом расхода до 150 м³/ч их концентрация в продукте повышается до 26 мас. %. Для сырья с концентрацией аренов 45 мас. % содержание аренов в продукте возрастает с 36 % при расходе 100 м³/ч до 42 % при 150 м³/ч.

Рис. 7. Зависимость содержания аренов в продукте от расхода сырья и содержания аренов в сырье (T – 350 °C, p – 4 МПа, Q сырья – 100–150 м³/ч, Q водорода – 82000 нм³/ч)

Fig. 7. Dependence of arene content in the product on feed rate and arene content in the feedstock ($T - 350^{\circ}C$, p - 4 MPa, feed rate $- 100-150 \text{ m}^{3}/\text{h}$, hydrogen flow rate $- 82000 \text{ Nm}^{3}/\text{h}$)

Таким образом, при исследовании влияния расхода сырья на содержание серы, азота и ароматических углеводородов в продукте установлено, что увеличение расхода сырья с 100 до 150 м³/ч приводит к снижению скорости реакции гидрогенолиза, что связано с малым временем контакта сырья с катализатором. Вместе с тем расход сырья определяет производительность установки. Математическая модель позволяет определить оптимальные условия с точки зрения температурного режима для данной производительности промышленной установки.

Заключение

Для достижения поставленной цели настоящего исследования, связанной с прогнозированием работы промышленной установки гидроочистки вакуумного газойля при изменении состава сырья и основных управляющих параметров с применением математической модели, был выполнен комплекс лабораторных и численных исследований. Лабораторные исследования позволили установить качественный и количественный состав сырья и продуктов процесса гидроочистки вакуумного газойля, на основании которых составлен список возможных реакций. Проведение термодинамического анализа позволило определить вероятность протекания и условия обратимости реакций процесса. Полученные результаты послужили основой для разработки кинетической модели реактора гидроочистки, ключевое отличие которой от существующих заключается в необходимом и достаточном для описания промышленного процесса уровне формализованного описания механизма протекающих химических реакций. Выбранный уровень формализации обеспечивает необходимую точность расчетов, а разработанная кинетическая модель в качестве исходных данных использует доступный для заводских лабораторий набор экспериментальных данных о составе и свойствах сырья.

С применением разработанной математической модели выполнено прогнозирование работы промышленной установки гидроочистки вакуумного газойля при различных условиях эксплуатации. Определено, что повышение температуры с 330 до 390 °С приводит к снижению содержания ароматических соединений в гидроочищенном вакуумном газойле на 22–43 %, сернистых соединений на 33–67 %, азотистых соединений на 15 %. Установлено, что при увеличении расхода сырья с 100 до 150 м³/ч глубина десульфурации снижается на 3–6 %, конверсия азотистых соединений снижается на 8–11 %, насыщение ароматики на 13–20 %.

Таким образом, предложенный уровень формализованного описания химических превращений групп углеводородов и серосодержащих соединений вакуумного газойля в процессе гидроочистки позволил создать надежную математическую модель, достоверно описывающую работу промышленного реактора и позволяющую оценить влияние ключевых технологических параметров на содержание серы в гидрогенизате.

СПИСОК ЛИТЕРАТУРЫ

- 1. Абдуллин А.И., Сираев И.Р. Гидрокрекинг как процесс получения дизельного топлива // Вестник технологического университета. 2016. Т. 19. № 10. С. 41–43.
- Исследование кинетических особенностей реакций гидродесульфуризации, гидродеазотирования и гидрирования соединений тяжелого нефтяного сырья на сульфидных Ni6PMonW(12–n)/Al2O3 катализаторах гидроочистки / А.В. Моисеев, Н.М. Максимов, П.С. Солманов, В.А. Тыщенко // Кинетика и катализ. – 2023. – Т. 64. – № 2. – С. 189–202. DOI: https://doi.org/10.31857/S0453881123020053
- 3. Халикова Д.А., Петров С.М., Башкирцева Н.Ю. Обзор перспективных технологий переработки тяжелых высоковязких нефтей и природных битумов // Вестник Казанского технологического университета. 2013. Т. 16. № 3. С. 217–221.
- Nadeina K.A., Potapenko O.V., Kazakov M.O. Influence of hydrotreatment depth on product composition of fluid catalytic cracking process for light olefins production // Catalysis Today. 2021. № 378. P. 2–9. DOI: https://doi.org/10.1016/j.cattod.2021.04.014
- Shved M.V., Glushko N.A. The process for hydrotreatment of diesel fuel: chemical basis // World science: problems and innovations: materials of the XLVII International scientific and practical conference. – Penza, October 30, 2020. – Penza: Science and Education (IP Gulyaev G.Yu.), 2020. – P. 30–34.
- 6. Жуков К.Г. Экологические аспекты применения бензина каталитического крекинга и методы улучшения его качества // Электронный научный журнал Нефтегазовое дело. – 2019. – № 1. – С. 218–233. DOI: https://doi.org/10.17122/ogbus-2019-1-218-233.
- 7. Габидуллина Л.В., Муртазин Ф.Р. Пути совершенствования процесса гидроочистки дизельного топлива // Международный научный журнал «Вестник науки». 2024. Т. 3. № 5 (74). С. 1401–1403.
- 8. Влияние термических и каталитических методов добычи на состав и свойства извлекаемой нефти / А.И. Хамидуллина, Д.А. Ибрагимова, С.М. Петров, З.Р. Закирова // Вестник технологического университета. 2015. Т. 18. № 9. С. 124–128.
- 9. Томин В.П., Кабышев В.А. Проблемы аномальных процессов солеотложений и коррозии на установках гидроочистки нефтяных фракций // Технологии нефти и газа. 2009. № 4 (63). С. 3–10.
- 10. Шемелова О.В. Математическое моделирование в процессах химической технологии // Бюллетень науки и практики. 2018. Т. 4. № 12. С. 20–23. DOI: https://doi.org/10.5281/zenodo.2252778.
- 11. Капуста Д.П. Молекулярно-динамическое моделирование реакций в гидратированных системах: автореф. дис. ... канд. физ.-мат. наук. М., 2022. 22 с.
- 12. Самойлов Н.А. Математическое моделирование и оптимизация процесса гидроочистки дизельного топлива // Теоретические основы химической технологии. 2021. Т. 55. № 1. С. 99–109. DOI: https://doi.org/10.31857/S0040357120060202.
- 13. Самойлов Н.А. Специфика математического моделирования сложных многокомпонентных химических процессов // Промышленные процессы и технологии. 2021. Т. 1. № 1. С. 37–52. DOI: https://doi.org/10.37816/2713-0789-2021-1-1-37-52.
- 14. Судаков Д.О. Превращение азот-и серосодержащих соединений в процессе гидроочистки вакуумного газойля // Химия и химическая технология в XXI веке: материалы XXIII Международной научно-практической конференции студентов и молодых ученых имени выдающихся химиков Л.П. Кулёва и Н.М. Кижнера. Томск, 16–19 мая 2022. Томск: ТПУ, 2022. Т. 2. С. 100–101.
- 15. Кривцова Н.И., Судаков Д.О. Оценка термодинамических и кинетических параметров протекания реакций деазотирования в процессе гидроочистки // Добыча, подготовка, транспорт нефти и газа: Материалы X Международной конференции. Екатеринбург, 02–06 октября 2023. Екатеринбург: Институт химии нефти СО РАН, 2023. С. 118–119.
- 16. Бессонова Н.В., Зирка А.А., Решетников С.И. Математическое моделирование гидроочистки топлива с учетом влияния температуры на дезактивацию катализатора // Наука. Технологии. Инновации: XV Всероссийская научная конференция молодых ученых, посвященная Году науки и технологий в России. – Новосибирск, 06–10 декабря 2021. – Новосибирск: Новосибирский государственный технический университет, 2021. – Ч. 3. – С. 17–20.

- 17. Babidorich M.I., Demin A.M., Reutova O.A. Using mathematical modeling to generate training data in hydrotreating processes // International Journal of Open Information Technologies. 2023. Vol. 11. № 5. P. 114–118.
- Pereira Neto A.T., Lucas Fernandes T.CR, Da Silva H.B. Jr. Three-phase trickle-bed reactor model for industrial hydrotreating processes: CFD and experimental verification // Fuel Processing Technology. – 2020. – № 208:106496. DOI: https://doi.org/10.1016/j.fuproc.2020.106496
- 19. Применение прогнозирующих алгоритмов машинного обучения к процессам нефтепереработки в рамках интеллектуальной автоматизации / В.В. Бухтояров, И.С. Некрасов, В.С. Тынченко, К.А. Башмур, Р.Б. Сергиенко // Научные труды НИПИ Нефтегаз ГНКАР. 2022. № S1. С. 12–20. DOI: https://doi.org/10.5510/OGP2022SI100665.
- 20. Cyclic operation of trickle bed reactors: a review / A. Atta, S. Roy, F. Larachi, K.D.P. Nigam // Chemical Engineering Science. 2014. № 115. P. 205–214. DOI: https://doi.org/10.1016/j.ces.2013.08.038.
- 21. Alvarez A., Ancheyta J. Modeling residue hydroprocessing in a multi-fixed-bed reactor system // Applied Catalysis A: General. 2008. № 351. P. 148–158. DOI: https://doi.org/10.1016/j.apcata.2008.09.010
- 22. Alvarez A., Ancheyta J. Simulation and analysis of different quenching alternatives for an industrial vacuum gasoil hydrotreater // Chemical Engineering Science. 2008. № 63. P. 662–673. DOI: https://doi.org/10.1016/j.ces.2007.10.007
- 23. A modeling study of the effect of reactor configuration on the cycle length of heavy oil fixed-bed hydroprocessing / A. Alvarez, J. Ancheyta, G. Centeno, G. Marroquín // Fuel. 2011. № 90. P. 3551–3560. DOI: https://doi.org/10.1016/j.fuel.2011.03.043 007
- 24. Modeling of trickle bed reactor for hydrotreating of vacuum gas oils: effect of kinetic type on reactor modeling / F. Jimenez, K. Ojeda, E. Sanchez, V. Kafarov, R. Maciel Filho // Computer Aided Chem. Eng. 2007. № 24. P. 515–520. DOI: https://doi.org/10.1016/S1570-7946(07)80109-X
- 25. Korsten H., Hoffmann U. Three-Phase reactor model for hydrotreating in pilot trickle-bed reactors // AIChE J. 1996. № 42. P. 1350–1360. DOI: https://doi.org/10.1002/aic.690420515 X
- 26. Mederos F.S., Ancheyta J. Mathematical modeling and simulation of hydrotreating reactors: cocurrent versus countercurrent operations // Appl. Cat. A: General. 2007. № 332. P. 8–21. DOI: https://doi.org/10.1016/j.apcata.2007.07.028
- 27. Mederos F.S., Ancheyta J., Elizalde I. Dynamic modeling and simulation of hydrotreating of gas oil obtained from heavy crude oil // Appl. Cat. A: General. 2012. № 425–426. P. 13–27. DOI: https://doi.org/10.1016/j.apcata.2012.02.034
- Rodríguez M.A., Ancheyta J. Modeling of Hydrodesulfurization (HDS), Hydrodenitrogenation (HDN), and the Hydrogenation of Aromatics (HDA) in a vacuum gas oil hydrotreater // Energy Fuels. – 2004. – № 18. – P. 789–794. DOI: https://doi.org/10.1021/ef030172s
- 29. Kallinikos L.E., Jess A., Papayannakos N.G. Kinetic study and H2S effect on refractory DBTs desulfurization in a heavy gasoil // Journal of Catalysis. 2010. № 269. P. 169–178. DOI: https://doi.org/10.1016/j.jcat.2009.11.005
- 30. Simulation of hydrotreating of light cycle oil with a system dynamics model / Z. Liu, Y. Zheng, W. Wang, Q. Zhang, L. Jia // Applied Catalysis A: General. 2008. № 339. P. 209–220. DOI: https://doi.org/10.1016/j.apcata.2008.01.018

Информация об авторах

Сания Болатовна Аркенова, инженер отделения химической инженерии Инженерной школы природных ресурсов Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. sba5@tpu.ru; https://orcid.org/0000-0002-6345-9754

Елена Николаевна Ивашкина, доктор технических наук, профессор отделения химической инженерии Инженерной школы природных ресурсов Национального исследовательского Томского политехнического университета, Россия 634050, г. Томск, пр. Ленина, 30. ivashkinaen@tpu.ru; https://orcid.org/0000-0003-3984-1352

Елизавета Федоровна Гриценко, магистрант отделения химической инженерии Инженерной школы природных ресурсов Национального исследовательского Томского политехнического университета, Россия 634050, г. Томск, пр. Ленина, 30. efg2@tpu.ru

Поступила в редакцию: 11.11.2024 Поступила после рецензирования: 11.02.2025 Принята к публикации: 03.03.2025

REFERENCES

- 1. Abdullin A.I., Siraev I.R. Hydrocracking as a process for obtaining diesel fuel. *Bulletin of the Technological University*, 2016, vol. 19, no. 10, pp. 41–43. (In Russ.)
- 2. Moiseev A.V., Maksimov N.M., Solmanov P.S., Tyshchenko V.A. Study of kinetic features of reactions of hydrodesulfurization, hydrodenitrogenation and hydrogenation of heavy oil feedstock compounds on sulfide Ni6PMonW(12-n)/Al2O3 hydrotreating Kinetics and Catalysis, 2023, 64, 189-202. catalysts. vol. no. 2, pp. (In Russ.) DOI: https://doi.org/10.31857/S0453881123020053
- 3. Khalikova D.A., Petrov S.M., Bashkirtseva N.Yu. Review of promising technologies for processing heavy high-viscosity oils and natural bitumen. *Bulletin of the Kazan Technological University*, 2013, vol. 16, no. 3, pp. 217–221. (In Russ.)
- Nadeina K.A., Potapenko O.V., Kazakov M.O. Influence of hydrotreatment depth on product composition of fluid catalytic cracking process for light olefins production. *Catalysis Today*, 2021, vol. 378, pp. 2–9. DOI: https://doi.org/10.1016/j.cattod.2021.04.014
- Shved M.V., Glushko N.A. The process for hydrotreatment of diesel fuel: chemical basis. World science: problems and innovations: materials of the XLVII International Scientific and Practical Conference. Penza, October 30, 2020. Penza, Science and Education (IP Gulyaev G.Yu.) Publ., 2020. pp. 30–34.
- 6. Zhukov K.G. Environmental aspects of the use of catalytic cracking gasoline and methods for improving its quality. *Electronic scientific journal Oil and Gas Business*, 2019, no. 1, pp. 218–233. (In Russ.) DOI: https://doi.org/10.17122/ogbus-2019-1-218-233.

- 7. Gabidullina L.V., Murtazin F.R. Ways to improve the process of hydrotreating diesel fuel. *International scientific journal "Bulletin of Science"*, 2024, vol. 3, no. 5 (74), pp. 1401–1403. (In Russ.)
- 8. Khamidullina A.I., Ibragimova D.A., Petrov S.M., Zakirova Z.R. Influence of thermal and catalytic production methods on the composition and properties of recovered oil. *Bulletin of the Technological University*, 2015, vol. 18, no. 9, pp. 124–128. (In Russ.)
- 9. Tomin V.P., Kabyshev V.A. Problems of abnormal processes of salt deposition and corrosion in installations for hydrotreating oil fractions. *Oil and Gas Technologies*, 2009, no. 4 (63), pp. 3–10. (In Russ.)
- 10. Shemelova O.V. Mathematical modeling in chemical engineering processes. *Bulletin of Science and Practice*, 2018, vol. 4, no. 12, pp. 20–23. (In Russ.) DOI: https://doi.org/10.5281/zenodo.2252778. article from a Russian-language journal
- 11. Kapusta D.P. Molecular dynamics modeling of reactions in hydrated systems. Cand. Diss. Abstract. Moscow, 2022. 22 p. (In Russ.)
- 12. Samoilov N.A. Mathematical modeling and optimization of the diesel fuel hydrotreating process. *Theoretical Foundations of Chemical Technology*, 2021, vol. 55, no. 1, pp. 99–109. (In Russ.) DOI: https://doi.org/10.31857/S0040357120060202.
- 13. Samoilov N.A. Specifics of mathematical modeling of complex multicomponent chemical processes. *Industrial processes and technologies*, 2021, vol. 1, no. 1, pp. 37–52. (In Russ.) DOI: https://doi.org/10.37816/2713-0789-2021-1-1-37-52.
- 14. Sudakov D.O. Conversion of nitrogen- and sulfur-containing compounds in the process of hydrotreating vacuum gas oil. *Chemistry and chemical technology in the 21st century. Proc. of the XXIII International scientific and practical conference of students and young scientists named after outstanding chemists L.P. Kulev and N.M. Kizhner.* Tomsk, May 16–19, 2022. Tomsk, TPU Publ., 2022. No. 2, pp. 100–101. (In Russ.)
- 15. Krivtsova N.I., Sudakov D.O. Evaluation of thermodynamic and kinetic parameters of denitrogenation reactions during hydrotreating. *Oil and Gas Production, Preparation, and Transportation. Proc. of the X International Conference*. Ekaterinburg, October 2–6, 2023. Ekaterinburg, Institute of Petroleum Chemistry SB RAS Publ., 2023. pp. 118–119. (In Russ.)
- 16. Bessonova N.V., Zirka A.A., Reshetnikov S.I. Mathematical modeling of fuel hydrotreating considering the effect of temperature on catalyst deactivation. *Science. Technologies. Innovations. XV All-Russian Scientific Conference of Young Scientists dedicated to the Year of Science and Technology in Russia.* Novosibirsk, December 06–10, 2021. Novosibirsk, Novosibirsk State Technical University Publ., 2021. P. 3, pp. 17–20. (In Russ.)
- 17. Babidorich M.I., Demin A.M., Reutova O.A. Using mathematical modeling to generate training data in hydrotreating processes. *International Journal of Open Information Technologies*, 2023, vol. 11, no. 5, pp. 114–118.
- 18. Pereira Neto A.T., Lucas Fernandes T.C.R., Da Silva H.B. Jr. Three-phase trickle-bed reactor model for industrial hydrotreating processes: CFD and experimental verification. *Fuel Processing Technology*, 2020, no. 208:106496. DOI: https://doi.org/10.1016/j.fuproc.2020.106496
- 19. Bukhtoyarov V.V., Nekrasov I.S., Tynchenko V.S., Bashmur K.A., Sergienko R.B. Application of predictive machine learning algorithms to oil refining processes within the framework of intelligent automation. *Scientific works of NIPI Neftegaz SOCAR*, 2022, no. S1, pp. 12–20. (In Russ.) DOI: https://doi.org/10.5510/OGP2022SI100665.
- 20. Atta A., Roy S., Larachi F., Nigam K.D.P. Cyclic operation of trickle bed reactors: a review. *Chemical Engineering Science*, 2014, no. 115, pp. 205–214. DOI: https://doi.org/10.1016/j.ces.2013.08.038.
- 21. Alvarez A., Ancheyta J. Modeling residue hydroprocessing in a multi-fixed-bed reactor system. *Applied Catalysis A: General*, 2008, no. 351, pp. 148–158. DOI: https://doi.org/10.1016/j.apcata.2008.09.010
- 22. Alvarez A., Ancheyta J. Simulation and analysis of different quenching alternatives for an industrial vacuum gasoil hydrotreater. *Chemical Engineering Science*, 2008, vol. 63, pp. 662–673. DOI: https://doi.org/10.1016/j.ces.2007.10.007
- 23. Alvarez A., Ancheyta J., Centeno G., Marroquín G. A modeling study of the effect of reactor configuration on the cycle length of heavy oil fixed-bed hydroprocessing. *Fuel*, 2011, no. 90, pp. 3551–3560. DOI: https://doi.org/10.1016/j.fuel.2011.03.043 007
- 24. Jimenez F., Ojeda K., Sanchez E., Kafarov V., Maciel Filho R. Modeling of trickle bed reactor for hydrotreating of vacuum gas oils: effect of kinetic type on reactor modeling. *Computer Aided Chem. Eng.*, 2007, no. 24, pp. 515–520. DOI: https://doi.org/10.1016/S1570-7946(07)80109-X
- 25. Korsten H., Hoffmann U. Three-phase reactor model for hydrotreating in pilot trickle-bed reactors. *AIChE J.*, 1996, no. 42, pp. 1350–1360. DOI: https://doi.org/10.1002/aic.690420515 X
- 26. Mederos F.S., Ancheyta J. Mathematical modeling and simulation of hydrotreating reactors: cocurrent versus countercurrent operations. *Appl. Cat. A: General*, 2007, no. 332, pp. 8–21. DOI: https://doi.org/10.1016/j.apcata.2007.07.028
- 27. Mederos F.S., Ancheyta J., Elizalde I. Dynamic modeling and simulation of hydrotreating of gas oil obtained from heavy crude oil. *Appl. Cat. A: General*, 2012, no. 425–426, pp. 13–27. DOI: https://doi.org/10.1016/j.apcata.2012.02.034
- 28. Rodríguez M.A., Ancheyta J. Modeling of Hydrodesulfurization (HDS), Hydrodenitrogenation (HDN), and the Hydrogenation of Aromatics (HDA) in a vacuum gas oil hydrotreater. *Energy Fuels*, 2004, no. 18, pp. 789–794. DOI: https://doi.org/10.1021/ef030172s
- Kallinikos L.E., Jess A., Papayannakos N.G. Kinetic study and H₂S effect on refractory DBTs desulfurization in a heavy gasoil. *Journal of Catalysis*, 2010, no. 269, pp. 169–178. DOI: https://doi.org/10.1016/j.jcat.2009.11.005
- 30. Liu Z., Zheng Y., Wang W., Zhang Q., Jia L. Simulation of hydrotreating of light cycle oil with a system dynamics model. *Applied Catalysis A: General*, 2008, no. 339, pp. 209–220. DOI: https://doi.org/10.1016/j.apcata.2008.01.018

Information about the authors

Saniia B. Arkenova, Engineer, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. sba5@tpu.ru; https://orcid.org/0000-0002-6345-9754

Elena N. Ivashkina, Cand. Sc., Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. ivashkinaen@tpu.ru; https://orcid.org/0000-0003-3984-1352

Elizaveta F. Gritsenko, Master Student, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. efg2@tpu.ru

Received: 11.11.2024 Revised: 11.02.2025 Accepted: 03.03.2025