УДК 004.8:621.3 DOI: 10.18799/24131830/2024/3/4530 Шифр специальности ВАК: 2.3.1

Метод агрегирования предпочтений при определении пороговых значений яркости для распознавания объектов на оптических изображениях

Д.К. Нгуен, С.В. Муравьев⊠

Национальный исследовательский Томский политехнический университет, Россия, г. Томск

[™]muravyov@tpu.ru

Аннотация. Актуальность исследования обусловлена необходимостью автоматизации обработки больших объемов геофизической информации, извлекаемой из изображений, получаемых посредством аэрофотосъемки или космического дистанционного зондирования. Основным этапом обработки изображения с целью распознавания объектов является сегментация, состоящая в разделении изображения на две однородные четко различимые непересекающиеся области с известными границами. Простыми, но эффективными и поэтому популярными являются пороговые методы сегментации. Цель: описание результатов экспериментальных исследований применения ранее разработанного авторами робастного метода комплексирования интервалов агрегированием предпочтений для выбора пороговых значений при сегментации объектов на оптических изображениях. Объекты: изображения береговой линии, полученные с помощью спутников дистанционного зондирования Земли. Методы. Анализируемое изображение разбивается на равные полосы. По гистограмме яркости каждой полосы определяются характерный для нее интервал яркости. Для полученных интервалов яркости вычисляется результат комплексирования методом комплексирования интервалов агрегированием предпочтений, который используется в качестве порогового значения яркости при формировании сегментированного изображения. Результаты экспериментальных исследований 100 спутниковых изображений береговой линии показали, что предложенный метод обеспечил корректное разделение областей суши и моря на 84 изображениях, в то время как традиционные методы максимума энтропии, арифметического усреднения и Оцу показали корректные результаты только в, соответственно, 27, 76 и 73 случаях. Оценки метрик Precision, Recall и отклонения вычисленного порога от заведомо правильного значения показали доминирование предложенного метода над остальными протестированными методами по качеству сегментации.

Ключевые слова: сегментация изображения, порог яркости, комплексирование интервалов, агрегирование предпочтений, изображения дистанционного зондирования, береговая линия

Для цитирования: Нгуен Д.К., Муравьев С.В. Метод агрегирования предпочтений при определении пороговых значений яркости для распознавания объектов на оптических изображениях // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2024. – Т. 335. – № 3. – С. 17–30. DOI: 10.18799/24131830/2024/3/4530

UDC 004.8:621.3 DOI: 10.18799/24131830/2024/3/4530

Preference aggregation method in determining brightness threshold values for object recognition on optical images

D.C. Nguyen, S.V. Muravyov[⊠]

National Research Tomsk Polytechnic University, Tomsk, Russian Federation

[™]muravyov@tpu.ru

Abstract. *Relevance.* The need to automate the processing large volumes of geophysical information extracted from images obtained through aerial photography or space remote sensing. The main stage of image processing for object recognition is segmentation. It consists in dividing the image into two homogeneous, clearly distinguishable non-overlapping areas with

known boundaries. Threshold segmentation methods are simple but effective and therefore popular. *Aim.* To describe the experimental studies results of application of the robust method of interval fusion with preference aggregation previously developed by the authors for selecting threshold values when segmenting objects in optical images. *Objects.* Coastline images taken by Earth remote sensing satellites. *Methods.* The analyzed image is divided into equal bands. Based on the brightness histogram of each band, its characteristic brightness interval is determined. For the obtained brightness intervals, the fusion result is calculated using the interval fusion with preference aggregation method. The latter is used as a threshold brightness value when forming a segmented image. *Results.* The results of experimental studies of 100 satellite images of the coastline showed that the proposed method provided correct separation of land and sea regions in 84 images. And the traditional methods of maximum entropy, arithmetic averaging and Otsu showed correct results only in 27, 76 and 73 cases, respectively. Evaluations of such the metrics as Precision, Recall and deviation of the calculated threshold from a known correct value showed the dominance of the proposed method over other tested ones in terms of segmentation quality.

Keywords: image segmentation, brightness threshold, interval fusion, preference aggregation, Earth remote sensing images, coastline

For citation: Nguyen D.C., Muravyov S.V. Preference aggregation method in determining brightness threshold values for object recognition on optical images. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2024, vol. 335, no. 3, pp. 17–30. DOI: 10.18799/24131830/2024/3/4530

Введение

Информация, извлекаемая из оптических изображений, получаемых посредством аэрофотосъемки и (или) космического дистанционного зондирования, является необходимой при поиске, освоении и эксплуатации месторождений полезных ископаемых, при геодезических и картографических исследованиях, при оценке и мониторинге природных ресурсов и т. п. [1]. В силу наличия больших объемов такой информации весьма актуальной является автоматизация ее обработки. Основным этапом обработки изображения с целью распознавания объектов является сегментация, состоящая в разделении изображения на две однородные четко различимые непересекающиеся области с известными границами [2].

Будем рассматривать анализируемое изображение как двумерный массив, представленный $(r \times q)$ матрицей $C=[c_{ij}]$ пикселей, состоящей из строк i=1,..., r и столбцов j=1, ..., q. Каждый элемент матрицы (пиксель c_{ij}) принимает значение интенсивности цвета t (или *яркости*) соответствующей точки изображения в формате RGB, т. е. t=0, ..., 255.

В качестве источника данных о яркости пикселей будем пользоваться представлением анализируемого изображения с помощью *гистограммы яркости*, показывающей распределение количества пикселей по уровням интенсивности (или уровням серого цвета) оцифрованного изображения [3].

Самым простым, но достаточно эффективным и поэтому популярным является *пороговый метод* сегментации [2, 3], который разбивает множество пикселей изображения C на два подмножества: подмножество E пикселей, яркость которых превышает пороговое значение f, и подмножество P пикселей, яркость которых меньше порогового значения f. Это значит, что яркость пикселей выходного изображения D (т. е. результата сегмента-

ции) может принимать два значения – черное (1, фон) и белое (0, объект) в соответствии с формулой:

$$t(d_{ij}) = \begin{cases} 1, \text{ если } t(c_{ij}) \ge f, \\ 0, \text{ если } t(c_{ij}) < f, \end{cases}$$
(1)

где $t(d_{ij})$ – яркость пикселя $d_{ij} \in D$; $t(c_{ij})$ – яркость пикселя $c_{ii} \in C$.

Очевидно, что результат сегментации изображения пороговым методом прямо зависит от выбора значения порога. Если порог выбран неправильно, то возможны две нежелательные ситуации: 1) часть пикселей объекта ошибочно относятся к фону и 2) часть пикселей фона ошибочно относятся к объекту. Это приводит к неточным и ненадежным результатам сегментации. Поэтому остаются актуальными попытки разработки способов выбора подходящего порога для обеспечения точных результатов сегментации.

Целью данной статьи является описание результатов экспериментальных исследований применения ранее разработанного авторами робастного метода комплексирования интервалов агрегированием предпочтений (interval fusion with preference aggregation – IF&PA) [4] для выбора пороговых значений при распознавании объектов на фотоизображениях.

В качестве фотоизображений при проведении экспериментов будем использовать спутниковые снимки береговой линии. Точное и своевременное определение береговой линии играет важную роль в мониторинге прибрежных ресурсов и оценке воздействия на окружающую среду [5–9].

Для сравнения пороги выбирались также традиционными методами Оцу [10], усреднения и максимальной энтропии [11, 12] на тех же изображениях. Результаты тестирования показали, что точность результатов сегментации изображений с выбором порога методом IF&PA выше, чем у известных методов.

Метод комплексирования интервалов агрегированием предпочтений

Автоматический выбор пороговых значений для сегментации будем осуществлять предложенным и развиваемым научным коллективом проф. С.В. Муравьева (ТПУ) методом IF&PA [4, 13–15], который позволяет находить для заданной выборки неравноточных (т. е. имеющих разную дисперсию) значений {x₁, x₂, ..., x_m} некоторой физической величины Х оценку центра ее распределения. Эта оценка, которую будем называть результатом комплексирования х, характеризуется повышенными робастностью, точностью и достоверностью по сравнению с традиционными оценками, такими как среднее арифметическое, среднее взвешенное, выборочная медиана и др. [4, 13, 16]. Сформулируем кратко суть метода IF&PA, основные этапы которого представлены на рис. 1.

Рассмотрим набор из *m* замкнутых интервалов $\{I_k\}_{k=1}^m$ на вещественной числовой оси, где каждый интервал характеризуется *средней точкой* x_k , нижней границей x_k - ε_k и верхней границей x_k + ε_k , так что I_k = $[x_k$ - ε_k, x_k + $\varepsilon_k]; x_k, \varepsilon_k \in \mathbf{R}$. Ключевая идея метода состоит в преобразовании каждого из *m* исходных интервалов $\{I_k\}$, k=1, ..., m, в *ранжирование* принадлежащих этому интервалу *n* дискретных значений из множества $A=\{a_1, a_2, ..., a_n\} \in \mathbf{R}$. Ранжированием называется бинарное *отношение предпочтения* λ на множестве *A* в виде цепочки $\lambda=a_2\succ a_1\succ ..., \succeq a_s\sim a_t\succ ..., \ge a_p\sim a_q$, где символы \succ и ~ обозначают бинарные отношения стредого порядка и толерантности соответственно. Заметим, что порядок предпочтения в ранжировании всегда ориентирован слева направо, т. е. более предпочтительные альтернативы находятся слева.

Для представления исходных интервалов ранжированиями сформируем *диапазон актуальных значений* (ДАЗ), представляющий собой множество $A = \{a_1, a_2, ..., a_n\}$ строго упорядоченных дискретных значений $a_1 < a_2 < ... < a_n$. Наименьшая нижняя граница для всех интервалов выбирается в качестве нижней границы ДАЗ a_1 , т. е. a_1 =min { $x_k - \varepsilon_k | k = 1, ..., m$ }; в качестве верхней границы a_n берется наибольшая верхняя граница для этих интервалов, т. е. a_n =max { $x_k - \varepsilon_k | k = 1, ..., m$ }.

Для получения элементов $a_2, a_3, \ldots, a_{n-1}$ разбиваем полученный интервал $[a_1, a_n]$ на n-1 подынтервалов, длина (норма) которых равна $h=(a_n-a_1)/(n-1)$. Тогда *i*-й элемент ДАЗ определяется как $a_i=a_{i-1}+h, i=2, \ldots, n$.

Fig. 1. Stages of the IF&PA method

Множество A строго упорядоченных дискретных значений a_i , i=1, ..., n, используется для формирования профиля предпочтений $\Lambda(m, n)=\{\lambda_1, \lambda_2, ..., \lambda_m\}$, состоящего из ранжирований, представляющих интервалы I_k . Обозначим через A_k множество всех элементов из A, принадлежащих интервалу I_k , т. е. $A_k=\{a_i|a_i \in I_k \land a_i \in A\}$. Ясно, что его дополнение \overline{A}_k будет включать все остальные элементы из A, т. е. $\overline{A}_k = \{a_i|a_i \notin I_k \land a_i \in A\}$. Тогда для любого интервала I_k , k=1, ..., m имеем разбиение множества A на два класса эквивалентности A_k и \overline{A}_k , т. е. $A = A_k \cup \overline{A}_k$, $A_k \cap \overline{A}_k = \emptyset$.

Ранжирование λ_k , наведенное интервалом I_k , удовлетворяет следующим четырем условиям для *i*, *j*=1, ..., *n*:

$$a_i \in A_k \land a_j \notin A_k \Longrightarrow a_i \succ a_j; \tag{2}$$

 $a_i, a_j \in A_k \lor a_i, a_j \notin A_k \Longrightarrow a_i \sim a_j; \tag{3}$

 $a_i \notin A_k \land a_j \in A_k \Longrightarrow a_i \prec a_j; \tag{4}$

$$a_i, a_i \in A_k$$
 соседние элементы $\Rightarrow j \equiv i+1.$ (5)

Необходимость условия (5) определяется тем, что последовательность элементов множества Aявляется *строго монотонной*, т. е. $a_i < a_{i+1}$ для всех $i \in \mathbf{N}_n$. Класс $A_k \subseteq A$ может включать наборы только следующих друг за другом элементов из A без пропусков, т. е. список индексов этих элементов должен соответствовать *отрезку натурального ряда*. Заметим, что структура любого ранжирования, удовлетворяющего условиям (2)–(5), определяется выражением $\lambda_k = A_k \sim \overline{A}_k$, т. е. каждое такое ранжирование содержит *единственный* символ строгого порядка \succ и n-2 символов толерантности \sim .

Для полученного профиля $\Lambda(m, n)$ осуществляется поиск всех возможных ранжирований консенсуса { $\beta_1, \beta_2, ..., \beta_N$ } по правилу агрегирования Кемени [15, 17, 18]. Для этой цели используется рекурсивный алгоритм ветвей и границ собственной разработки RECURSALL [19]. Каждое ранжирование консенсуса β_k , k=1, ..., N, является оптимальным решением задачи о ранжировании Кемени [18, 20, 21], представляющим собой строгий порядок элементов из A, а их множество образует выходной профиль B(N, n).

Профиль B(N, n) преобразуется в единственное итоговое ранжирование консенсуса β_{fin} по правилу свёртки, описанному в [15, 20]. В качестве результата комплексирования x^* принимается наиболее предпочтительное дискретное значение в итоговом ранжировании консенсуса β_{fin} .

Если β_{fin} содержит более одного наилучшего дискретного значения, то в качестве естественного

представителя таких значений используется выборочная медиана, рассчитываемая для числа *v* наилучших элементов по известной формуле:

$$x^* = \begin{cases} a_{(\nu+1)/2}, & \text{если } \nu \text{ нечетно;} \\ (a_{\nu/2} + a_{1+\nu/2})/2, & \text{если } \nu \text{ четно.} \end{cases}$$
(6)

Заметим, что задача о ранжировании Кемени является *NP*-трудной [22], т. е. для нее не существует точный алгоритм с полиномиальным временем (пропорциональным размерности n=|A| задачи) решения. Одна из разумных рекомендаций в этой ситуации состоит в том, чтобы выбирать число n<20, подходящее для большинства практических применений и обеспечивающее нахождение точного ранжирования консенсуса за приемлемое время [15, 20]. В данной работе авторы используют n=11 при среднем времени решения порядка нескольких миллисекунд.

Пороговая сегментация с применением метода IF&PA

Для того чтобы выявить пороговое значение яркости (1), отвечающее наиболее близкому к истинному различию между сегментируемыми областями, исходное изображение необходимо разделить на несколько частей, каждая из которых будет характеризоваться своим распределением интенсивности пикселей. Для этого будем разбивать анализируемое полутоновое изображение *C* на 15 горизонтальных полос равной высоты [23]. По гистограммам полос будем определять соответствующие интервалы $\{I_k\}$ яркости образующих их пикселей. По этим интервалам с помощью процедуры IF&PA будем вычислять робастное значение порога яркости, которое будем использовать для сегментации (формирования выходного изображения *D*).

Процесс выполнения сегментации изображения с определением порога методом IF&PA представлен на рис. 2.

Определение нижней I_k^{low} и верхней I_k^{up} границ интервала яркости $I_k=[I_k^{\text{low}}, I_k^{\text{up}}]$ для каждой *k*-й полосы, k=1, 2, ..., m, осуществляется по соответствующей гистограмме. Для этого на *k*-й гистограмме формируются пять зон по степени интенсивности тона: черная, темная, средняя, светлая и белая [23]. Ширина каждой зоны определяется как

$$l=0,2(t_{\max}-t_{\min}),$$
 (7)

где t_{\min} , t_{\max} – минимальная и максимальная интенсивности.

Из рассмотрения большого количества разных изображений береговых линий следует, что большинство пикселей области морской поверхности принадлежат темной зоне гистограммы. Поэтому границы интервала I_k определяются по формулам:

$$I_k^{\text{low}} = t_{\min} + l; I_k^{\text{up}} = t_{\min} + 2l.$$
(8)

Puc. 2. Этапы сегментации изображения с расчетом порога методом IF&PA **Fig. 2.** Image segmentation stages with threshold determined by the IF&PA method

Для полученных интервалов яркости I_k вычисляется результат комплексирования x^* методом IF&PA, который используется в качестве порогового значения яркости f при формировании сегментированного изображения D в соответствии с формулой (1). Выходное изображение D является бинаризованным, в нем область белого цвета соответствует поверхности суши, а область черного цвета представляет морскую поверхность.

Программное обеспечение

для экспериментальных исследований

Для экспериментальной проверки предложенного метода было разработано программное обеспечение (ПО) в среде технических вычислений Matlab. На рис. 3 показан вид пользовательского интерфейса разработанного ПО. Пользователь имеет возможность выбрать исходное анализируемое изображение, задать параметры метода IF&PA, обработать изображение другими пороговыми методами, в том числе ручным (интерактивным) методом, результат которого считается правильным. Результат сегментации выводится на экран монитора с соответствующими оценками типовых мер качества распознавания.

Рассмотрим пример применения разработанного ПО для сегментации изображения береговой линии с определением порога яркости методом IF&PA. Входное изображение A размером 300×300 пикселей с помощью предварительной обработки преобразуется в полутоновое изображение C (рис. 4, a, δ).

Рис. 3. Интерфейс пользователя экспериментального программного обеспечения для пороговой сегментации изображений

Рис. 4. Пример пороговой обработки изображения: а) входное изображение А; б) отфильтрованное полутоновое изображение С; в) результат сегментации методом IF&PA

Fig. 4. Example of image threshold processing: a) input image; 6) filtered grayscale image C; β) result of segmentation by the IF&PA method

Puc. 5. Разбиение изображения С на 15 горизонтальных полос и построение гистограммы яркости каждой полосы **Fig. 5.** C image division into 15 horizontal bands and building a brightness histogram of each band

Таблица 1. Верхние и нижние границы интервалов I_k , k=1, 2, ..., 15**Table 1**. Unner and lower bounds of the intervals I_k k=1, 2, ..., 15

Iable 1. Upper and lower bounds of the intervals Ik, K=1, 2,, 15															
Ck	C1	C ₂	C ₃	C4	C ₅	C ₆	C ₇	C ₈	C9	C ₁₀	C ₁₁	C ₁₂	C ₁₃	C ₁₄	C ₁₅
Iklow	43	44	41	39	39	36	38	40	40	37	37	38	38	21	7
Ikup	80	82	77	74	73	67	71	75	74	68	68	71	70	36	9

Изображение *C* разбивается на 15 горизонтальных полос, для которых строятся гистограммы яркости (рис. 5). Для гистограммы каждой полосы по формулам (7) и (8) определяются значения верхней и нижней границ каждого интервала I_k (табл. 1).

Набор интервалов I_k , k=1, 2, ..., 15, подается на вход процедуры IF&PA, которая формирует диапазон актуальных значений $A=\{a_1, a_2, ..., a_{11}\}$, как показано на рис. 6. Нижняя граница ДАЗ $a_1=7$, верхняя граница $a_{11}=82$, норма h=(82-7)/10=7,5. Полученные 11 дискретных значений интенсивности $a_1, a_2, ..., a_{11}$ показаны на левой вертикальной оси на рис. 6. Соответствующие интервалам ранжирования, сформированные в соответствии с выражениями (2)–(5), образуют входной профиль предпочтения $\Lambda(15, 11)$, показанный в правой части рис. 6.

Алгоритм RECURSALL вычислил N=576 ранжирований Кемени. После свертки выходного профиля B(576, 11) получено итоговое ранжирование консенсуса β_{fin} :

$$a_6 \sim a_7 \sim a_8 \sim a_9 \succ a_{10} \succ a_5 \succ a_1 \sim a_3 \sim a_4 \sim a_{11} \succ a_2$$

Рис. 6. Пример работы процедуры IF&PA с интервалами яркости **Fig. 6.** Example of the IF&PA procedure operation with brightness intervals

Поскольку итоговое ранжирование содержит две наилучшие альтернативы $a_6 \sim a_7 \sim a_8 \sim a_9$, т. е. v=4, по формуле (6) получено значение $x^* = (a_7+a_8)/2 = (52,0+59,5)/2 = 55,75$. Найденный результат комплексирования принимается за порог яркости $f=x^* \approx 56$. По формуле (1) формируется бинаризованное изображение *D*, представляющее собой результат сегментации (рис. 4, *в*), где черная область соответствует морю, а белая – суше.

План эксперимента

Процедура сегментации с выбором порога методом IF&PA была протестирована путем предъявления ей набора из 100 различных изображений. Изображения являются снимками, полученными спутником дистанционного зондирования Земли Landsat 8, разных участков береговой линии в Юго-Восточной Азии. Изображения были загружены из онлайн-инструмента EarthExplorer [24], разработанного Геологической службой США (United States Geological Survey – USGS). Все загруженные изображения не содержат облаков и имеют наивысшее качество. Все изображения были визуально отредактированы, геометрически скорректированы, обрезаны до небольших изображений размером 300×300 пикселей и преобразованы в полутоновые изображения. Затем эти изображения были обработаны с целью удаления шума фильтром Гаусса со стандартным отклонением, равным 2.

Для сравнения те же изображения обрабатывались традиционными пороговыми методами сегментации: *методом Оцу* [10] (определяет оптимальный порог на основе минимизации внутриклассовой дисперсии яркости); *методом усреднения* (вычисляет порог как среднее арифметическое яркостей сегментируемой области); методом *максимальной энтропии* (МЭ – основан на оценивании параметров неизвестного закона распределения случайной величины из условия максимума энтропии Шеннона [11, 12]).

Все четыре сравниваемых метода осуществляли распознавание в автоматическом режиме, т. е. без участия оператора. Однако для обеспечения возможности сравнения результатов, полученных тестируемыми методами, с заведомо правильными (истинными) результатами распознавания при проведении испытаний был реализован интерактивный (ручной) режим сегментации, когда пользователь имеет возможность (рис. 3) ввести произвольное значение порога, визуально оценить качество результата сегментации и сохранить этот результат как правильный. Таким образом, для каждого из 100 изображений имеется правильный результат сегментации, полученный в интерактивном режиме, с которым сопоставляются результаты остальных четырех испытываемых методов.

Меры качества сегментации

Для оценки точности результатов сегментации изображений в эксперименте использовались известные метрики Accuracy (точность), Precision (прецизионность) и Recall (полнота) [25, 26].

Договоримся считать положительным такой исход работы метода сегментации, когда пиксель анализируемого изображения С отнесен к области Р (соответствующей поверхности моря), а отрицательным - исход, при котором пиксель отнесен к области Е (соответствующей поверхности суши). Тогда возможны четыре исхода работы метода сегментации (выраженных в количестве пикселей): истинно положительный (true positive - TP) - число пикселей из области моря, отнесенных тестируемым методом к области моря Р; истинно отрицательный (true negative - TN) - число пикселей из области суши, отнесенных тестируемым методом к области суши Е; ложно положительный (false positive - FP) - число пикселей из области суши, отнесенных тестируемым методом к области моря P; ложно отрицательный (false negative - FN) число пикселей из области моря, отнесенных тестируемым методом к области суши Е.

Ясно, что общее количество пикселей анализируемого изображения *C* равно сумме значений всех исходов, т. е.

$$|C| = r \cdot q = TP + TN + FP + FN.$$
(9)

Тогда показатели Precision и Recall рассчитываются по формулам:

$$Precision = TP/(TP + FP);$$
(10)

$$Recall = TP/(TP + FN).$$
(11)

Показатель точности выражается в терминах исходов следующим образом:

Accuracy= $(TP+TN)/(TP+TN+FP+FN)=(TP+TN)/r \cdot q.$ (12)

Показатель Accuracy можно оценивать также в виде выраженной в процентах доли правильно распознанных объектов среди всех проанализированных объектов.

Значения показателей (10)–(12) изменяются в диапазоне от 0 до 1. Чем ближе значение показателя к 1, тем лучше результат сегментации изображения.

Для каждого *i*-го изображения, *i*=1, ..., 100, рассчитывались *отклонения* ξ_i порогов от правильного значения по формуле:

$$\xi_i = |f_{\text{true}i} - f_{\text{method}i}|, \qquad (13)$$

где $f_{\text{true}i}$ – значение правильного порога, определенного интерактивным методом на *i*-м изображении; $f_{\text{method}i}$ – значение порога, определенного тестируемым методом (method = максимум энтропии, усреднение, Оцу или IF&PA) на *i*-м изображении.

Результаты экспериментальных исследований

Значения порогов для 100 изображений, полученные предложенным и известными методами приведены в табл. 2, в которой жирным шрифтом выделены полученные в ручном режиме пороговые значения, рассматриваемые как заведомо правильные. Из данных табл. 2 следует, что пороговые значения, полученные методом IF&PA, ближе к правильным значениям, полученным ручным методом, чем значения, полученные традиционными методами.

На рис. 7 представлены примеры сегментации изображений с помощью пороговой обработки, где f – вычисленный соответствующим методом порог для каждого изображения. На рис. 7 красным цветом показаны чрезмерно сегментированные области суши, а голубым цветом недостаточно сегментированные области моря. Это явление нередко возникает при применении пороговых методов [27], особенно при недостаточной однородности сегментируемых областей. Для преодоления этого недостатка обычно применяют более совершенные подходы к сегментации, такие как наращивание областей, детектирование контуров и т. д. [8, 23].

Данные экспериментов показывают, что даже без применения специальных мер результаты сегментации всех 100 изображений с применением IF&PA содержат значительно меньше пикселей, окрашенных в голубой и красный цвета, чем результаты других методов. Рис. 7 иллюстрирует этот факт на примере шести изображений. Таким образом, предложенный метод позволяет эффективно устранять влияние шумов в процессе обнаружения береговой линии.

Сравнение полученных изображений с правильными результатами (рис. 7, б) показало, что береговая линия, выделенная предложенным методом, как правило, имеет непрерывные границы и расположение, близкое к найденному ручным методом.

Оценки показателей качества сегментации Precision и Recall для примеров на рис. 7, рассчитанные по формулам (9)–(11), приведены в табл. 3. Результат сегментации изображения считается приемлемым, если значения показателей Precision и Recall превышают 0,5. В табл. 3 жирным шрифтом выделены значения, не удовлетворяющие указанному условию.

Результаты определения береговой линии, приведенные в табл. 4, показывают, что предложенный метод правильно распознал 84 из 100 изображений (84 %). Метод Оцу правильно распознал 73 изображения (73 %), метод усреднения – 74 изображения (74 %), а метод максимума энтропии – 27 изображения (27 %). Таким образом, метод IF&PA позволяет автоматически определять порог яркости изображения с лучшим показателем точности Ассигасу, чем традиционные методы.

	Метод					Метод					
Изображение			Method			Изображение	Method				
Image	Ручной Manual	МЭ мб	Усреднение Averaging	Оцу Otsu	IF&PA	Image	Ручной Manual	MЭ MF	Усреднение Аveraging	Оцу Otsu	IF&PA
1	97	141	96	109	94	51	102	83	71	89	86
2	95	135	93	105	96	52	66	147	87	96	96
3	89	121	100	105	86	53	72	135	93	98	99
4	101	97	89	100	95	54	122	130	75	86	85
5	84	121	87	101	85	55	86	73	62	76	72
6	97	133	92	113	87	56	129	174	82	94	90
7	90	125	74	96	87	57	63	97	73	88	82
8	89	134	82	97	86	58	62	107	75	90	84
9	86	121	98	109	99	59	81	148	105	99	88
10	85	103	56	55	67	60	62	129	70	91	88
11	64	105	56	55	70	61	51	130	63	89	74
12	64	104	62	59	63	62	60	139	58	77	80
13	63	95	29	55	57	63	94	151	79	97	97
14	80	33	22	65	60	64	95	101	84	108	91
15	61	92	57	50	56	65	71	97	81	105	92
16	74	105	44	53	56	66	65	144	75	90	71
17	63	112	60	55	61	67	65	142	65	76	74
18	62	102	56	51	58	68	61	146	72	68	78
19	59	100	42	55	58	69	82	121	61	66	75
20	61	114	69	56	63	70	60	122	75	89	80
21	98	94	48	65	60	71	67	98	73	98	79
22	103	95	59	67	72	72	68	92	63	84	72
23	68	97	64	62	72	73	74	88	45	63	66
24	62	29	26	73	55	74	60	100	72	85	73
25	67	29	32	69	65	75	64	80	54	58	60
26	72	122	72	93	76	76	68	103	64	61	63
27	58	128	51	81	66	77	68	103	74	66	72
28	60	117	73	92	67	78	71	112	60	67	74
29	52	93	30	45	50	79	67	92	57	63	68
30	51	154	32	51	50	80	65	86	66	70	72
31	49	154	45	53	60	81	55	80	57	70	61
32	57	88	41	50	56	72	59	121	54	61	64
33	42	103	60	51	55	83	70	128	112	97	83
34	52	41	39	72	63	84	65	176	87	92	79
35	68	33	35	73	61	85	71	62	77	108	73
36	58	133	40	64	55	86	100	127	110	103	75
37	57	137	62	64	62	87	77	53	57	106	72
38	60	152	58	63	64	88	73	37	44	98	62
39	55	152	42	66	57	89	131	121	122	146	120
40	105	123	104	115	96	90	62	127	70	83	61
41	70	124	71	72	76	91	47	175	62	73	65
42	69	124	68	74	73	92	49	67	56	63	50
43	122	101	40	68	57	93	77	147	60	65	47
44	51	108	71	77	70	94	60	58	54	80	59
45	51	119	75	71	77	95	49	81	55	74	57
46	101	134	87	97	79	96	26	68	40	77	57
47	81	102	57	88	70	97	44	86	47	58	57
48	92	111	60	83	77	98	60	112	62	74	75
49	66	133	62	78	60	99	60	87	51	59	51
50	62	80	37	55	52	100	69	99	49	62	56

Таблица 2.Значения порогов, полученные предложенным и известными методамиTable 2.Threshold values determined by the proposed and traditional methods

Рис. 7. Примеры результатов пороговой сегментации изображений береговой линии: а) входное изображение; б) ручной метод; в) метод максимума энтропии; г) метод усреднения; д) метод Оцу; е) метод IF&PA
 Fig. 7. Examples of threshold segmentation results of coastline images: a) input image; б) manual method; в) maximum entropy method; г) averaging method; д) Otsu method; e) IF&PA method

- Таблица 3. Оценки показателей качества сегментации Precision и Recall для примеров изображений на рис. 7
- Table 3.
 Estimates of segmentation quality measures

 Precision and Recall for the image examples in
 Fig. 7

Изобра-	Показа-	Метод/Method				
жение на	тель каче-	Максимум				
рис. 7	ства	энтропии	Усреднение	Оцу	IE 8.DA	
Image in	Quality	Maximum	Averaging	Otsu	IFWLY	
Fig. 7	measure	entropy				
1	Precision	0,441	1,0	0,960	1,0	
1	Recall	0,691	0,931	0,998	0,987	
2	Precision	0,453	0,375	1,0	1,0	
2	Recall	0,783	0,407	1,0	1,0	
2	Precision	0,133	0,217	0,398	0,742	
3	Recall	0,423	0,611	0,828	0,991	
4	Precision	0,319	0,666	0,353	0,870	
4	Recall	0,589	0,941	0,796	0,987	
F	Precision	0,551	0,424	1,0	0,973	
5	Recall	0,628	0,510	1,0	1,0	
6	Precision	0,073	0,271	0,216	0,280	
0	Recall	0,184	0,815	0,636	0,810	

Визуализация оценок качества сегментации

Были построены кривые распределения рассчитанных по формуле (13) отклонений ξ_i (рис. 8) порогов, определенных методами максимума энтропии, усреднения, Оцу и IF&PA, по всем 100 проанализированным изображениям. На графиках группы значений ξ_i , относящиеся к одному тестируемому методу, упорядочены по возрастанию с целью повышения информативности визуализации.

Кривые, представленные на рис. 8, показывают изменение ξ_i в зависимости от номера изображения для каждого исследуемого метода. По расстоянию от этих кривых до горизонтальной оси координат

легко судить о качестве сегментации метода: чем меньше это расстояние, тем выше качество метода.

Таблица 4. Количество правильно сегментированных объектов

Tahle A	Number of correctly segmented	ohipcts
<i>i upie</i> 4.		oblects

	, , , ,	,					
	Распознано методом						
Komunampa waafina	Recognized by the method of						
количество изобра- жений Number of images	Максимум энтропии Maximum entropy	Усредне- ние Averaging	Оцу Otsu	IF&PA			
100	27	76	73	84			

Из рис. 8 видно, что кривая ξ_i , построенная для метода IF&PA (красная линия), расположена ближе к горизонтальной оси, чем кривые, построенные для всех остальных методов.

По тому же принципу, что и графики распределения отклонений ξ_i на рис. 8, были построены кривые распределения значений показателей Precision и Recall по всем проанализированным изображениям (рис. 9, 10). В отличие от рис. 8, на рис. 9, 10 наилучшему методу соответствует кривая, расположенная ближе остальных кривых к горизонтальной линии, проходящей через значение 1,0. Из графиков на рис. 9, 10 видно, что этому требованию удовлетворяет кривая красного цвета, соответствующая методу IF&PA. Результаты экспериментальных исследований показывают, что на большинстве протестированных изображений предложенный метод имеет более высокое качество сегментации, чем три традиционных метода, использованных для сравнения.

Рис. 8. Графики упорядоченных значений отклонений ξ_i , i=1, ..., 100, порогов, определенных методами максимума энтропии (синий), усреднения (желтый), Оцу (зеленый) и IF&PA (красный)

Fig. 8. Graphs of ordered values of deviations ξ_i, i=1, ..., 100, of thresholds determined by methods of maximum entropy (blue), averaging (yellow), Otsu (green) and IF&PA (red)

Рис. 9. Графики упорядоченных значений показателя Precision для изображений i=1, ..., 100, обработанных методами максимума энтропии (синий), усреднения (желтый), Оцу (зеленый) и IF&PA (красный)

Fig. 9. Graphs of ordered values of the Precision metric for images i=1, ..., 100, processed by methods of maximum entropy (blue), averaging (yellow), Otsu (green) and IF&PA (red)

Рис. 10. Графики упорядоченных значений показателя Recall для изображений i=1, ..., 100, обработанных методами максимума энтропии (синий), усреднения (желтый), Оцу (зеленый) и IF&PA (красный)

Fig. 10. Graphs of ordered values of the Recall metric for images i=1, ..., 100, processed by methods of maximum entropy (blue), averaging (yellow), Otsu (green) and IF&PA (red)

Заключение

В статье рассмотрен метод сегментации изображения путем определения порога яркости с помощью предложенного и развиваемого авторами робастного метода комплексирования интервалов агрегированием предпочтений IF&PA. Результаты экспериментальных исследований 100 спутниковых изображений береговой линии показали, что предложенный метод обеспечил корректное разделение областей суши и моря на 84 изображениях, в то время как традиционные методы – максимума энтропии, арифметического усреднения и Оцу – показали корректные результаты только в, соответственно, 27, 76 и 73 случаях. Оценки метрик Precision, Recall и отклонения вычисленного порога от заведомо правильного значения показали преимущество предложенного метода над остальными протестированными методами по качеству сегментации.

Известия Томского политехнического университета. Инжиниринг георесурсов. 2024. Т. 335. № 3. С. 17–30 Нгуен Д.К., Муравьев С.В. Метод агрегирования предпочтений при определении пороговых значений яркости для...

СПИСОК ЛИТЕРАТУРЫ

- 1. Schowengerdt R. Remote sensing: models and methods for image processing. NY: Academic Press, 2006. 560 p.
- Gonzalez R.C., Woods R.E. Digital image processing. NY: Pearson, 2018. 1192 p. 2
- Duda R.O., Hart P.E., Stork D.G. Pattern classification. NY: Wiley-Interscience, 2012. 688 p. 3.
- Muravyov S.V., Khudonogova L.I., Emelyanova E.I. Interval data fusion with preference aggregation // Measurement. 2018. -4. Vol. 116. - P. 621-630.
- 5. Coastline information extraction based on the tasseled cap transformation of Landsat-8 OLI images / C. Chen, J. Fu, S. Zhang, X. Zhao // Estuarine, Coastal and Shelf Science. - 2019. - Vol. 217. - P. 281-291.
- Coastline detection in satellite imagery: a deep learning approach on new benchmark data / C. Seale, T. Redfern, P. Chatfield, C. Luo, K. Dempsey // Remote Sensing of Environment. - 2022. - Vol. 278. - P. 113044.
- 7. Çelik O.İ., Gazioğlu C. Coast type based accuracy assessment for coastline extraction from satellite image with machine learning classifiers // The Egyptian Journal of Remote Sensing and Space Science. - 2022. - Vol. 25. - № 1. - P. 289-299.
- 8. Hu X., Wang Y. Monitoring coastline variations in the Pearl River Estuary from 1978 to 2018 by integrating Canny edge detection and Otsu methods using long time series Landsat dataset // Catena. - 2022. - Vol. 209. - P. 105840.
- 9. Viaña-Borja S.P., Ortega-Sánchez M. Automatic methodology to detect the coastline from Landsat images with a new water index assessed on three different Spanish Mediterranean deltas // Remote Sensing. - 2019. - Vol. 11. - № 18. - P. 2186.
- 10. Otsu N. A threshold selection method from gray-level histograms // IEEE Transactions on Systems, Man, and Cybernetics. -1979. – Vol. 9. – № 1. – P. 62–66.
- 11. Gull S.F., Skilling J. Maximum entropy method in image processing // IEE Proceedings F (Communications, Radar and Signal Processing). - 1984. - Vol. 131. - № 6. - P. 646-659.
- 12. Entropy and contrast enhancement of infrared thermal images using the multiscale top-hat transform / J.C. Mello Román, J.L. Vázquez Noguera, H. Legal-Ayala, D.P. Pinto-Roa, S. Gomez-Guerrero, M. García Torres // Entropy. - 2019. - Vol. 21. -№ 3. – 244.
- 13. Худоногова Л.И. Комплексирование интервальных измерительных данных методом агрегирования предпочтений: автореф. дис. ... канд. техн. наук. - Томск, 2017. - 23 с.
- 14. Хо М.Д. Повышение точности анализа гетероскедастичных измерительных данных: автореф. дис. ... канд. техн. наук. Томск, 2021. – 21 с.
- 15. Емельянова Е.Ю. Агрегирование предпочтений на основе точного решения задачи о ранжировании Кемени: автореф. дис. ... канд. техн. наук. – Томск, 2022. – 23 с. 16. Riani M., Torti F., Zani S. Outliers and robustness for ordinal data // Modern Analysis of Customer Surveys / Eds. R.S. Kenett,
- S. Salini. New York: John Wiley & Sons, 2012. P. 155-169.
- 17. Kemeny J.G., Snell J.L. Mathematical models in the social sciences. Cambridge: MIT Press, 1972. 145 p.
- 18. Литвак Б.Г. Экспертная информация: методы получения и анализа. М.: Радио и связь, 1982. 184 с.
- 19. Muravyov S.V. Ordinal measurement, preference aggregation and interlaboratory comparisons // Measurement. 2013. -Vol. 46. – № 8. – P. 2927–2935.
- 20. Muravyov S.V., Emelyanova E.Y. Kemeny rule for preference aggregation: reducing all exact solutions to a single one // Measurement. - 2021. - Vol. 182. - P. 109403.
- 21. Muravyov S.V. Dealing with chaotic results of Kemeny ranking determination // Measurement. 2014. Vol. 51. P. 328-334.
- 22. Rico N., Alonso P., Díaz I. Kemeny ranking aggregation meets the GPU // The Journal of Supercomputing. 2023. Vol. 79. -№ 9. – P. 10335–10352.
- 23. Муравьев С.В., Нгуен Д.К. Автоматическая сегментация методом комплексирования интервалов агрегированием предпочтений при распознавании дефектов сварки // Дефектоскопия. – 2023. – № 12. – Р. 34-44.
- 24. EarthExplorer. URL: http://earthexplorer.usgs.gov (дата обращения: 07.10.2023).
- 25. Chicco D., Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation // BMC Genomics. - 2020. - Vol. 21. - № 1. - P. 1-13.
- 26. Tharwat A. Classification assessment methods // Applied Computing and Informatics. 2020. Vol. 17. № 1. P. 168-192.
- 27. Sigut J., Fumero F., Nuñez O. Over- and under-segmentation evaluation based on the segmentation covering measure // Proceedings of the 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG'2015). - Pilsen, Czech Republic, 2015. - P. 83-89.

Информация об авторах

Дык Кыонг Нгуен, аспирант отделения автоматизации и робототехники Инженерной школы информационных технологий и робототехники Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. nguyen@tpu.ru

Сергей Васильевич Муравьев, доктор технических наук, профессор отделения автоматизации и робототехники Инженерной школы информационных технологий и робототехники Национального исследовательского Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, 30. muravyov@tpu.ru; https://orcid.org/0000-0001-5650-1400

Поступила в редакцию: 10.01.2024 Поступила после рецензирования: 01.02.2024 Принята к публикации: 14.02.2024

REFERENCES

- 1. Schowengerdt R. Remote sensing: models and methods for image processing. New York, Academic Press, 2006. 560 p.
- 2. Gonzalez R.C., Woods R.E. Digital image processing. New York, Pearson, 2018. 1192 p.
- 3. Duda R.O., Hart P.E., Stork D.G. *Pattern classification*. New York, Wiley-Interscience, 2012. 688 p.
- 4. Muravyov S.V., Khudonogova L.I., Emelyanova E.I. Interval data fusion with preference aggregation. *Measurement*, 2018, vol. 116, pp. 621–630.
- Chen C., Fu J., Zhang S., Zhao X. Coastline information extraction based on the tasseled cap transformation of Landsat-8 OLI images. *Estuarine, Coastal and Shelf Science*, 2019, vol. 217, pp. 281–291.
- 6. Seale C., Redfern T., Chatfield P., Luo C., Dempsey K. Coastline detection in satellite imagery: A deep learning approach on new benchmark data. *Remote Sensing of Environment*, 2022, vol. 278, 113044.
- 7. Çelik O. İ., Gazioğlu C. Coast type based accuracy assessment for coastline extraction from satellite image with machine learning classifiers, *The Egyptian Journal of Remote Sensing and Space Science*, 2022, vol. 25, no, 1, pp. 289–299.
- 8. Hu X., Wang Y. Monitoring coastline variations in the Pearl River Estuary from 1978 to 2018 by integrating Canny edge detection and Otsu methods using long time series Landsat dataset. *Catena*, 2022, vol. 209, pp. 105840.
- 9. Viaña-Borja S.P., Ortega-Sánchez M. Automatic methodology to detect the coastline from Landsat images with a new water index assessed on three different Spanish Mediterranean deltas. *Remote Sensing*, 2019, vol. 11, no. 18, 2186.
- 10. Otsu N. A threshold selection method from gray-level histograms. *IEEE Transactions on Systems, Man, and Cybernetics*, 1979, vol. 9, no. 1, pp. 62–66.
- 11. Gull S.F., Skilling J. Maximum entropy method in image processing. *IEE Proceedings F (Communications, Radar and Signal Processing)*, 1984, vol. 131, no. 6, pp. 646–659.
- 12. Mello Román J.C., Vázquez Noguera J.L., Legal-Ayala H., Pinto-Roa D.P., Gomez-Guerrero S., García Torres M. Entropy and contrast enhancement of infrared thermal images using the multiscale top-hat transform. *Entropy*, 2019, vol. 21, no. 3, 244.
- 13. Khudonogova L.I. Interval measurement data fusion by the method of preference aggregation. Cand. Diss. Abstract. Tomsk, 2017. 23 p. (In Russ.)
- 14. Ho M.D. Accuracy enhancement of heteroscedastic measurement data analysis. Cand. Diss. Abstract. Tomsk, 2021. 21 p. (In Russ.)
- 15. Emelyanova E.Y. Preference aggregation based on the exact solution of Kemeny ranking problem. Cand, Diss. Abstract. Tomsk, 2022. 23 p. (In Russ.)
- 16. Riani M., Torti F., Zani S., Outliers and robustness for ordinal data. Kenett R.S., Salini S. (Eds.) *Modern Analysis of Customer Surveys*. New York, John Wiley & Sons, 2012. pp. 155–169.
- 17. Kemeny J.G., Snell J.L. Mathematical models in the social sciences. Cambridge, MIT Press, 1972. 145 p.
- 18. Litvak B.G. Expert information: methods for obtaining and analysis. Moscow, Radio i svyaz Publ., 1982. 184 p. (In Russ.)
- 19. Muravyov S.V. Ordinal measurement, preference aggregation and interlaboratory comparisons. *Measurement*, 2013, vol. 46, pp. 2927–2935.
- 20. Muravyov S.V., Emelyanova E.Y. Kemeny rule for preference aggregation: reducing all exact solutions to a single one. *Measurement*, 2021, vol. 182, 109403.
- 21. Muravyov S.V. Dealing with chaotic results of Kemeny ranking determination. Measurement, 2014, vol. 51, pp. 328-334.
- 22. Rico N., Alonso P., Díaz I. Kemeny ranking aggregation meets the GPU. *The Journal of Supercomputing*, 2023, vol. 79, no. 9, pp. 10335–10352.
- 23. Muravyov S.V., Nguyen D.C. Automatic segmentation by the method of interval fusion with preference aggregation when recognizing weld defects. *Russian Journal of Nondestructive Testing*, 2023, vol. 59, no. 12, pp. 1280–1290. (In Russ.)
- 24. EarthExplorer. Available at: http://earthexplorer.usgs.gov (accessed: 7 October 2023).
- 25. Chicco D., Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. *BMC Genomics*, 2020, vol. 21, no. 1, pp. 1–13.
- 26. Tharwat A. Classification assessment methods. Applied Computing and Informatics, 2020, vol. 17, no. 1, pp. 168–192.
- 27. Sigut J., Fumero F., Nuñez O. Over- and under-segmentation evaluation based on the segmentation covering measure. *Proceedings of the 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision* (WSCG'2015), Pilsen, Czech Republic, 2015. pp. 83–89.

Information about the authors

Duc Cuong Nguyen, Postgraduate Student, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. nguyen@tpu.ru

Sergey V. Muravyov, Dr. Sc., Professor, National Research Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russian Federation. muravyov@tpu.ru; https://orcid.org/0000-0001-5650-1400

Received: 10.01.2024 Revised: 01.02.2024 Accepted: 14.02.2024