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Abstract. Relevance. Achieving the greatest rate of penetration is the aim of every drilling engineer because it is one of the most
significant factors influencing drilling costs. However, a variety of drilling conditions could have an impact on rate of penetration,
complicating its forecast. Aim. To suggest a novel strategy to accurately predict rate of penetration and optimize drilling
parameters. Objects. Real-time drilling data of a few wells in the Ca Tam oil field, Vietham, with more than 900 datasets
including significant parameters like rotary speed, weight on bit, standpipe pressure, flow rate, weight of mud, torque. Methods.
Various methods using Artificial Neural Network was proposed to estimate rate of penetration. Results. The number of neurons
in a hidden layer was varied then the results of different Artificial Neural Network models were compared in order to obtain the
optimal model. The final Artificial Neural Network model shows high exactness when contrasted with actual rate of penetration,
in this manner, it tends to be suggested as a successful and reasonable approach to predict the rate of penetration of different
wells in the Ca Tam oil field. Based on the proposed Artificial Neural Network model, the optimal weight on bit was determined
for the drilling interval from 1800 to 2300 m of oil wells in the research region.
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[IporHo3upoBaHUE MeXaHUYECKOI CKOPOCTH GypeHUs
Y ONITUMHU3ALUA HArpy3KH Ha J0JI0TO C UCII0JIb30BAaHUEM
HCKYCCTBEHHbIX HEHPOHHBIX ceTeil

By Xonr 3b10Hr™, Hryen Munb Xoa, Hryen Tuen Xyur, Hryen Txe Bunb

Xamolickull yHugepcumem 20pHo2o desa u zeos02uu, Bbemuawm, 2. XaHot

“vuhongduong@humg.edu.vn

AnHoTanus. AKmya/ibHocms. JlocTiKeHUe MaKCUMabHON MeXaHU4eCKOH CKOpPOCTH 6YpeHHUsl SIBJSETCS L[eJbI0 KaXK[0To
HHXeHepa-GypOoBHKa, TOCKOJIbKY MexaHHU4ecKasi CKOPOCTb 6ypeHHUs SIBJIsIeTCs OJHUM U3 HauboJiee BAXKHBIX paKTOPOB, BJIU-
SI0UIMX Ha 3aTpaThbl Ha OypeHue. OHAKO pasyiM4YHble YCIOBUSl 6YpEeHHsT MOTYT OKa3aThb BJIHMSIHHE Ha CKOPOCTb GypeHwus,
YCI0XHSs ee TporHo3. Levlo viccienoBaHus SBJSAETCA NMpeAsoKeHrue HOBOM CTPATEryuu JIJisi TOYHOTO MPOTHO3UPOBAHUSA
MeXaHU4YeCKOU CKOpPOCTH GypeHHs W ONTUMHU3AIMU NMapaMeTPoB OypeHUsA. 066eKmMOM WCCIe[IOBAHUS SABJSIOTCA JaHHbIE
OypeHHUs] B pea/IbHOM BpeMeHU HECKOJIbKHUX CKBa)KHH Ha HePTAHOM MecTopoxkzZeHWH besyra B KblysioHrckoMm 6GacceiiHe
mesbda 0xHOTO BheTHaMa ¢ Gosiee 4eM 900 HaGopaMu JJaHHBIX, BKJIIOYas BaKHbIE TAapaMeTPhbl, TAKHE KaK CKOPOCTb Bpa-
IleHHs], Harpy3Ka Ha /I0JI0TO, JaBJIeHHe Ha CTOsIKe, 1e6UT, BeC 6ypPOBOro pacTBOpa, KPyTAIWKHA MoMeHT. Memodul. /s oneH-
KM MexXaHHYeCcKOM CKopocTH OypeHHUs OblIa HpejAsoKeHa pas3MdHasg MeTOOJIOTHS, HCIOJb3YIoUias HCKYCCTBEHHYIO
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HEHPOHHYIO ceTb. Pe3ys1smamul. KosnyecTBO HEHPOHOB B CKPBITOM CJ1I0€ BapbHPOBAJIOCh, II0C/IE Yero CPaBHUBAJINCH pe-
3yJIBTAThl Pa3HbIX MoJieJiell HCKYCCTBEHHOH HEHPOHHOM CeTH C IieJbI0 NMOJyYeHUsl ONTUMaIbHON MoJesu. OKOHYaTeIbHasA
Mo/ieJIb UCKyCCTBEHHON HEMpPOHHOM CeTH NOKa3blBaeT BBICOKYIO TOYHOCTb 110 CPAaBHEHHIO ¢ GAaKTHYEeCKOH MeXaHH4YeCcKOH
CKOPOCTbI0 OypeHHs], I0ITOMY ee MOXKHO pacCMaTPUBAThb KaK YCIMELIHbIH U PasyMHbIH M0JX0/, K IPOrHO3UPOBAHUIO MeXa-
HUYECKOH CKOPOCTH GypeHHUsl PAa3JMYHbIX CKBOXKUMH Ha HePTIHOM MecTOpoxAeHUH Benyra. Takxe Ha OCHOBE Ipe/JIOXKeH-
HOW MO/IeJIM UCKYCCTBEHHON HEHPOHHOU CeTH ObLI ONpeJie/ieH ONTUMAIbHbIN PEXXUM HArPy3KU Ha JJ0JI0TO AJIs1 UHTepBaJia
o6ypenus oT 1800 g0 2300 M B paiioHe UCC/Iel0BaHUS.

KimlodyeBble c/10Ba: onTHMMH3alMs NapaMeTpPoB OypeHUs, MeXxaHH4YecKass CKOPOCTb GypeHMs, UCKycCTBeHHasi HelpoHHas
ceTb, MeCTOpoXx/JeHue benyra

BaarogapHocTi: Pa6oTa BbINoIHEHA NIPU HOAepKe XaHOMCKOro YHUBEPCUTETA TOPHOIO Jiesia U reoJioruy, I. XaHoi, ko T22-
14. ABTOpBI BBIP@KAIOT [J1y6OKY!0 6/1aroJapHOCTb BCEM 3a [10JIe3Hble KOMMEHTapHH, KOTOpbIe TIOMOTJIM Y/IY4IIUTh CTaThIO.

JAna nutupoBaHus: [[porHo3upoBaHUe MeXxaHU4YeCKOM CKOpoCcTH 6ypeHHUsl U ONTUMU3alUsA Harpy3KHy Ha J0JI0TO C UCNOJIb-
30BaHHEM UCKYCCTBEHHbIX HepOoHHBIX ceTell / By XoHr 3bioHr, Hryen Munb Xoa, HryeH Tuen XyHr, Hryen Txe Bunb // U3-
BecTHsI TOMCKOI0 MOJIMTEXHUYECKOTO YHUBepCcUTeTa. UHXXUHUPHUHT reopecypcoB. — 2024. - T. 335. - Ne 3. - C. 192-203. DOL:
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Introduction

Achieving the greatest Rate of Penetration (ROP) is
the aim of every drilling engineer because it could save
time, diminish cost and limit drilling problems [1].
Nonetheless, ROP could be affected by many drilling
parameters which lead to complication in its prediction.
There have been many studies propose mathematical
relationships between various drilling parameters and
ROP. In 1962, W.C. Maurer proposed an equation for
roller-cone bits that predicts ROP assuming that the
bottom hole is perfectly cleaned [2]. Galle et al. [3]
developed a method using graphs and diagrams to
determine the optimal combination of weight on bit
(WOB) and rotation per minute (RPM) for roller cone
bits, while Bingham modified Maurer's model with a
simple experimental model that only considers low
WOB and RPM, but doesn't account for drilling depth
[4]. Bourgoyne and Young created an empirical model
to predict ROP based on multiple drilling parameters,
which has become a widely used approach for real-
time optimization of drilling parameters [5]. Warren
presented a perfect cleaning ROP model for soft
formations that relates ROP to WOB, RPM, and bit
size. Later, he added a wear function to reflect the bit
wear impact [6]. Al-Betairi et al. proposed a new ROP
model that uses controllable and uncontrollable drilling
variables to predict the optimum penetration rate,
evaluated the sensitivity of each parameter on ROP,
and determined correlational coefficients through
multiple regression analysis [7]. However, these
predict equations normally proposed from limited
database in particular research area. Therefore, when
applying them to other case, which has different
geological properties, the result is normally inaccurate.
Subsequently, it is essential and critical to propose a
new approach to predict ROP with high accuracy.
Because of the intricacy of the relationship between
ROP and drilling parameters, artificial neural network
(ANN) is by all accounts a reasonable choice to

demonstrate this complicated interaction. Some ANN
models were proposed to predict ROP from drilling
data [8-16]. These authors discuss the application of
various artificial intelligence (Al) techniques such as
ANNSs, support vector regression (SVR), decision trees
(DT), and machine learning (ML) in predicting the rate
of penetration during drilling operations. They
compare the performance of these models against
traditional empirical models and evaluate their
accuracy using statistical measures such as mean
absolute error (MAE), root mean square error (RMSE),
and determination coefficient (R?). These articles
demonstrate the potential of Al techniques to improve
drilling efficiency and reduce costs in the petroleum
industry. However, most of these published articles just
present ANN models without providing specific
equations to predict ROP.

In this study, authors apply ANN method with real
time drilling data to generate a specific ANN model
and calculation to predict ROP.

Input data

The Ca Tam field is located at block 09-3/12 of the
Cuu Long basin, Vietnam, about 160 km to the
southeast of Vung Tau city (Fig. 12. The block covers
an area of approximately 6,000 km“, with water depths
ranging from 15 to 60 m. The field is being developed
by a consortium comprising Vietsovpetro (55%), a
joint venture between Vietnam Oil & Gas Group
(PetroVietnam) and Zarubezhneft, PetroVietnam
Exploration Production (PVEP, 30%) and Bitexco
Group (15%).

When drilling through the Miocene strata, wells
frequently encounter numerous difficulties and issues
connected to borehole instability. It is as a result of the
long-term open-hole conditions of wells and the high
clay content of the rock (Table 1 summarizes the
stratigraphic description of three study wells).
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Table 1. Stratigraphic description of three study wells

Ta6auya 1. Cmpamuepaguueckoe onucaHue mpex Usy4aemMbvlX CKEAHCUH

BLOCKS 127 &

VIETGAZPROM

)

Well/CxkBaxkuHa
A B C
_E U:; Middle Miocene: 1707.0-1985.0 mMD | Middle Miocene (N12): (1992.0-2511.0 mMD) Middle Miocene: 2156- 2654 mMD
D g (1584.3-1833.5 mTVD) (1595.2-1933.15 mTVD) (1595-1882.33 mTVD)
E & Cpeznnuii Muonen: 1707.0-1985.0 m | Cpepgnuit Muonen: 1992.0-2511.0 m CpenHuii Muoues: 2156- 2654 m
£ 8 (rsiy6uHa mo cTBoJIy) (ryy6uHa o cTBOJIy) (ryy6uHa mo cTBOJIy)
1584.3-1833.5™m 1595.2-1933.15 M 1595-1882.33 M
(MctunHas ray6una no BepTukanu) | (McTuHHas riy61Ha o BepTHKaIN) (McTunHas riy61Ha 1o BepTHUKaJIK)
1992-2100 m: Predominantly clay and sand. 2156-2200 m: Predominantly clay, sand.
Clay: brownish gray, brown, reddish brown, Clay: grayish green, light brown, soft,
soft, washable. subblocky.
Sand: light gray, light greenish gray, Sand: transparent to translucent, light gray
1722-1800 m: Predominantly sand transparent to translgcent, fine to coarse grains, | to gray, greenish gray, medium to coarse,
and clay. common medium grains, subangular to commonly coarse grained, subangular to
Clay: br(;wnish rav. brown. reddish subrounded, poorly sorted. subrounded, poorly sorted.
bros\’/;m soft sray, ! 2100-2410 m: Predominantly clay and sand. 2200-2300 m: Predominantly clay, sand.
! " Clay: brown, light brown, brownish gray, light Clay: moderate brown, light gray to gray,
Sand: greenish gray, transparent to .
gray, soft, and washable. greenish gray, soft, subblocky.
translucent, fine to coarse, X . . .
: - Sand: light gray, greenish gray, occasionally Sand: transparent to translucent, light gray
commonly medium grains, poorly . . . ) .
light reddish brown, transparent to translucent, | to gray, greenish gray, fine to medium
= | sorted, sub-angular to sub-rounded. . ) . . f
o = . fine to coarse grains, common medium grains, grained, subangular to subrounded,
S | 1800-1985 m: Predominantly
2 5| sandstone and clavstone subangular to subrounded, poorly sorted. moderately sorted.
§ = ystone. . 2410-2480 m: Predominantly clay and sand. 2300- 2400 m: Predominantly clay, sand.
% E| Claystone: gray, brownish gray, light . . .
/O . . Clay: greenish gray, light gray, soft, washable. Clay: light gray, moderate brown, gray,
gray, light brownish gray brown, . . . .
; Sand: light gray, greenish gray, occasionally greenish gray, soft, subblocky.
reddish brown, soft, soft to firm. . . .
. . light reddish brown, transparent to translucent, | Sand: transparent to translucent, light gray
Sandstone: greenish gray, light gray, ) ) . ) . ) .

4 fine to coarse grains, common medium grains, to gray, greenish gray, fine to medium
transparent to translucent, fine to b 1 b ded ) ] ned. sub 1 b ded
coarse, commonly very coarse subangular to subrounded, poorly sorted. grained, subangular to subrounded,

rains’ oorly sorted. sub-aneular to 2480-2511 m: Predominantly clay, sand, moderately sorted. Trace of coal.
Eub-ro'upndedy ’ g claystone and sandstone. 2400- 2650 m: Predominantly clay, sand.
' Clay: greenish gray, light gray, soft, soluble in Clay: moderate brown, light gray to gray,

part. greenish gray, soft, subblocky.
Sand: light gray, greenish gray, occasionally Sand: transparent to translucent, light gray,
light reddish brown, transparent to translucent, | greenish gray, fine to medium grained,
fine to coarse grains, common medium grains, subangular to subrounded, moderately
subangular to subrounded, poorly sorted. sorted.
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Fig. 2.  WOB and ROP changing trend of three wells: a) WOB data; b) ROP data

Puc. 2. TeHOeHYyusi usMeHeHUs Hazpy3ku Ha do10mo (a) u MexaHuyeckolli ckopocmu GypeHus (b) no mpem ckeaxicuHam

It can be seen from Fig. 2 that:

e ROP is unpredictable and changes quickly;

e due to the different WOB used, there is a
considerable variance in ROP between three wells,
indicating that WOB is one of the most sensitive
parameters that affect ROP;

e despite the fact that the obtained ROP in well C is
significantly higher than that of other wells, the
adjustment range of WOB is quite broad and defies
all laws;

e although high achieved ROP was maintained when
applying increased WOB, it would raise the cost of
destruction energy and shorten bit life.

The best rate ROP must be established in order to
avoid drilling issues and save time for wells in the Ca
Tam area. The authors present an ANN model to predict
ROP from real data of three wells in a research oil field
with more than 1220 datasets that include significant
parameters like RPM, WOB, standpipe pressure (SPP),
flow rate (FR), and torque (TQ) (Table 2).

Data preprocessing
Outlier detection and removal

Abnormal data might be regarded as noise as they
can harm the ANN model and limit model
generalization. The Z-score outlier identification
technique examines the dataset of three wells for
aberrant results [17]. The supplied data was stripped of
any outlier data points. The participant is awarded a
score based on their performance, which is known as
the Z-score:

7 = Xi - Xmean
sp '’
where Xmean 1S the mean value of the data; SD is the
standard deviation of the data.

The following agreements were made as z<2 imply the
outcome is satisfactory in order to make the interpretation
of the z-scores simpler. 2<z<3 implies that the outcome is
uncertain. z>3 denotes an undesirable outcome.

The input data was further examined and smoothed
using the Butterworth filter in order to decrease
volatility and eliminate statistical noise [18].
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Table 2. Well-log data
Ta6auya 2. /laHHble N0 CKBANCUHAM
Well /CkBa>kuHa
Parameters/IlapameTpsl A B C
Number of core/KoauuectBo npo6 201 520 499
TVD (m) Top/Kposas 1594.1 1595.04 1595.77
BepTukasnbHas riy6rHa 3a6os (M) Bottom/IlofoumBa 1833.5 1933.23 1882.33
Min/MuHUMYM 78.47 73.84 83.26
MexaHquCig:C(l?;{)};?Tb GypeHust Max/Maxkcumym 14.29 1512 2241
(M) Mean/CpenHee 35.52 53.25 65.15
Stdev/CTaH/jlapTHOE OTKJIOHEHUE 1191 10.57 10.65
Min/MuHUMYM 8.4 5.9 9.99
WOB (ton) Max/MakcuMyM 0.2 0.2 1.01
Harpyska Ha gos0To (T) Mean/Cpeznnee 2.2 2.66 7.85
Stdev/CTaH/jlapTHOE OTKJIOHEHHE 1.9 1.05 1.86
Min/MuaumMym 130 130 193
RPM (revs/mn) Max/MakcumyM 60 79 49
060poThl B MUHYTY (06/MHH.) Mean/Cpeznnee 115.25 116.02 139.89
Stdev/CTaHzapTHOE OTKJIOHEHHE 17.57 11.45 16.94
Min/MuHMMYyM 2782.56 3474.12 4074.78
TQ (kg/m) Max/MakcumMyM 2014.5 2554.08 3057.02
KpyTsamuit MoMeHT (Kr/M) Mean/CpesnHee 2329.67 2969.34 3635.3
Stdev/CTaH/japTHOE OTKJIOHEHHE 118.87 230.02 252.43
Min/MuHHUMYM 57.07 58.83 60.31
FR (1/s) Max/MakcuMyM 46.79 44.33 23.12
Je6ur (1/c) Mean/Cpeznnee 56.3 58.32 57.86
Stdev/CTaH/jlapTHOE OTKJIOHEHHE 2.26 1.29 4.11
Min/MuHuMyM 110.1 112.92 180.1
SPP (atm) Max/MakcumMyM 72.31 75.04 61.2
JlaBsieHue B cToOsiKe (aTM) Mean/Cpeznnee 98.69 102.42 158.6
Stdev/CTaHzapTHOE OTKJIOHEHHE 7.04 6.71 18.48

Data selection

The accuracy of the ANN model is largely dependent
on the input parameters chosen for the training phase.
The inter-relationships between parameters were looked
into in order to choose, which parameter should be used
as input data (Fig. 3). A regression coefficient that is
closer to 1 indicates a positive correlation between
parameters, whereas one that is closer to —1 indicates a
negative correlation. Fig. 3 demonstrates that all drilling
parameters are appropriate and can be kept when
creating an ANN model.

Data normalization

The scales used for various drilling parameters vary
greatly, which can have a significant impact on the
model accuracy. It is necessary as normalization
eliminates geometrical biases against specific data
vector dimensions. Every piece of data is handled
fairly in this way. As a result, writers normalize the
input data using the following equation:

_ (X - Xmin)

Xnormalize _X X )
max ~ “min

where Xnormaiize 1S the normalized value; X is the input
data; Xmin is the minimum value of raw variable; Xmax IS
the maximum value of raw variable.

Model development

In this paper, to forecast ROP from drilling
parameters, the authors suggest an ANN using a back-
propagation training approach (BPNN) and a log-
sigmoid activation function [19]. In the Ca Tam oil
field, a training data set of 1220 samples from three
wells is divided into three sets: 70% of the samples are
used to train the network, 15% are used for testing, and
15% are used for validation. The ANN model output
value is the ROP value, and its five parameters ~-WOB,
RPM, TQ, FR and SPP — are taken into consideration
as input data (Fig. 4).

To identify the mistake, the calculated output from
the ANN after a cycle (or iteration) is contrasted with
the real output provided in the sample dataset (actual
ROP). In order for output neurons and hidden neurons
to modify their weights, this error is communicated
back to them. The mistake is propagated in both
directions repeatedly, either until it falls below a
predefined minimum or until the number of loops hits a
predetermined threshold (Fig. 5). The RMS difference
between the ANN model projected ROP and the actual
ROP is a measure of the model accuracy:

2
ROP ict — ROP
_ ( predict actual)
RMSBTTOT - \/Z '

n
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There is no set formula for calculating the number
of neurons in the hidden layer, making it a difficult
stage in model construction. In this work, various
scenarios with varying numbers of neurons in the
hidden layer were run along with tests for their impact
on the final prediction in order to establish the ideal
number of hidden neurons (Table 3). It is crucial to
remember that the hidden layer neuron count should be
carefully set because too many neurons there can cause
overfitting, which reduces the network generalization.

>

e

\0
’;\m’l‘;
*‘3@»@
'e’s

R Table 3. Result of using different number of neurons in
&
@" hidden layer
A T

Ta6auya 3. Pesyabmam ucno./1b308aHusi pazHoz2o KoJaude-
cmea HelipoHo8 8 CKPbIMOM C/10€

Number of neural in | Data training |Data validation
hidden layer 06y4eHue [IpoBepku Data test
KosnuectBo Helpo- JAHHBIX JAHHBIX Tectuposanme
HOB B CKpBbITOM cjloe | R? RMSE R? RMSE | R? | RMSE
5 0.965 [ 0.0026 | 0.969 [0.0024(0.928|0.0041
6 0.957 [0.0034 | 0.949 [0.0032{0.922|0.0039
7 0.961 | 0.0029 | 0.959 [0.0028|0.963|0.0029
Input Layer € R® Hidden Layere R ™ Output Layere R" 8 0.972 | 0.003 | 0.962 |0.0025]0.961|0.0031
Fig. 4. ANN model to predict ROP 9 0.923 | 0.0042 | 0.89 |0.0042|0.8980.0045
Puc. 4. Modeabv HHC 04151 npo2HO3UpOBAHUST MEeXAHUYECKOU 10 0.983 | 0.0017 | 0.975 [0.0021[0.972 | 0.0026
ckopocmu GypeHust 11 0.981 [ 0.0018 [0.9715[0.0023[0.967 | 0.0027
12 0.98 |0.0018 | 0.962 [0.0026|0.972(0.0025
13 0.979 [0.0016 | 0.962 [0.0027[{0.958|0.0031
14 0.981 | 0.0018 | 0.973 [0.0021 [0.969| 0.0028
15 0.976 | 0.0016 | 0.966 |0.0026 |0.944 | 0.0036

Forward Propagation

and divided data into
@ s I The authors found that a model with 10 neurons in
§ o the hidden layer is best for predicting ROP of the

testin
:i investigated wells by comparing the correlation

RMS o coefficient (RZ) and RMSE between these models
— (Table 3).
gy

Backward . .

Propzl:aliun Results and discussions

:: In order to prove the efficacy of the proposed ANN
e — model, the authors used Multivariate regression
Calculating Weighs method to generate equations to predict ROP from

change and update

drilling parameters then compare the results of two
0 ROP=a,;WOB+a,RPM+a;TQ+a,FR+asSPP+b,
{ 3

where a;, a, as, a;, as and b are the empirical

Calculate Error Update Weights parameters, which values are respectively: a;= —

""&:fgg;“g \ J 1.15743; a,=0.178066; a3=0.019056; a,=0.351704;
- 1 as=0.064732; b= -50.1241.

([ — ) When comparing accuracy of two models — ANN

Chiitiges and Multivariate Regression, it is observed from Fig. 6

e 8 J that ROP prediction from the ANN model has better

- match and follows the changing trend of actual ROP in

three wells. Therefore, the authors generated a new

equation to determine ROP from the proposed ANN

Fig. 5. ANN model flow chart model with biases and weights of each neural (Table 4).

Puc. 5. bBaok-cxema modeau HHC
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Fig. 6. Comparing ROP prediction by ANN, multivariate regression and actual ROP in well: a) A; b) B; c) C
Puc. 6. CpasHeHue npozHo3a MexaHu4eckoli ckopocmu 6ypeHust ¢ nomouwbio HHC, MHoz2oMepHOlU pezpeccuu u gpakmuyeckoli

MexaHu4eckoll ckopocmu GypeHusi 8 ckeadcuHe: a) A; b) B; c) C

( 2
ROP= AZ LW—].J +b2,
ROP=
( )

+b,,

5 2
- Z}N” (_Z[WOB.W“NRPM Wy o+ )) -1

+TQW; 3+FRW; 4+SPP Wy, 5
1+exp ' ' '

where A;(ws, i) is the vector of weight link the input
neurons and the hidden neurons; Ax(Ws, i) is the vector
of weight link the hidden neurons to the output
neurons; b is the bias vector for input layer; b, is the
bias vector for output layer; X is the input data.

Determination of WOB optimal value

In this section, the WOB is optimized to achieve the
best ROP for a particular formation with the aid of neural
network model and brute force algorithm. As an example,
the optimization is achieved by splitting formation in
database, which spans from 1595 to 1933 m into 7 sections
of each 50 m. The minimum and the maximum of WOB
for every division is determined and used as reference
limits. The brute force algorithm evaluates all the possible
value of WOB between the limits (from 1 to 10 tons) and
the ROP in each scenario is then projected using the
suggested ANN model. The optimal WOB is determined
based on two criteria: the mean value and standard
deviation of the predicted ROP because the objective of
this study is not only to find the optimal value of WOB to
achieve ROP max, but also to maintain a stable ROP
value throughout the drilling interval (Fig. 7).
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Table 4. ANN weights and layers bias
Ta6auya 4. Beca HHC u cmeujeHue caoes
Hld(gen layer neuron Weight from the input neurons to the hidden neuron (W) Bias of hidden layer (b1) | Bias of outputlayer (bz)
HerOH CKpBITOTO Bec o BXO/IHBIX HENDOHOB K CKDBITOMY HEMDOH (W) CMe].LleHl/Ie CKpBITOrO CMe].LleHI/[e BbBIXOJHOTO
csiost P P y HEHpOHy (W1 ciiosi (b1) ciios (b2)
1 0.716160 -0.086680 | 1.011533 | -0.137673 [-2.989703 -0.805459
2 1.391110 0.549202 | 0.869311 |-0.857077 [-1.981862 -0.212758
3 0.757028 0.081891 | 0.549014 | 2.223974 |[-0.353078 -0.970811
4 -0.107131 0.549205 |-2.865236 | -0.081505 | 2.628079 -1.009392
5 0.440916 -1.213588 |-0.707841 | 0.839954 |-2.058846 -0.734020 0.638699
6 -0.962696 0.885008 | 1.359589 | -0.459556 | 0.102182 -0.614032 ’
7 3.071694 -1.486080 | 0.018324 | 1.449299 |-1.835713 2.467094
8 1.336814 1.212675 |-6.615816 | -2.594175 | 0.389015 1.523646
9 0.528138 -1.219627 | 1.560386 | 1.797248 |-0.443743 1.319486
10 0.476239 -1.711590 |-3.138083 | 1.854319 |-3.359954 2.284501
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Fig. 7. Example of ROP prediction by ANN when changing WOB value for the interval depth from 1845 to 1895 m
Puc. 7. Ilpumep npozHo3upogaHusi mexaHu4eckol ckopocmu 6ypeHusi no HHC npu uameHeHuu 3HayeHusl Ha2py3Ku Ha 00/10mo

04151 uHmepesa.a 2ay6uHsl ¢ 1845 do 1895 m

It can be seen from Fig. 7 that:

e When WOB increases from 1.2 to 4.4 tons, ROP
has an upward trend. Keep increasing WOB, ROP
is not only enhanced but also has a decreased trend.
It is consistent with the result of previous studies
when indentation depth increases, but hole cleaning
is not good enough [20-22]. Furthermore, it leads
to increasing cost of destruction energy and bit life
reduction.

e Furthermore, when applying WOB value of 4.4 tons,
the standard deviation was just 24.25 m/hr, which
means the predicted ROP, in this case, was
relatively stable through interval depth. Comparing
to the real data, it is seen that there is also an

increase in the mean value of ROP (24.48%).
Therefore, 4.4 tons can be considered as the optimal
value of WOB.

Following the same process for other sections, we
obtain the following optimal WOB values as it is
shown in Table 5.

Table 5 shows that ROP improves significantly
(from 14 to 26%) when the optimal WOB is applied to
the prediction model. Especially at the two-section
depth S6 and S7, the recommended optimal WOB is
even smaller than the actual WOB, although predicted
ROP rises by 24.48 and 14.54%, respectively. This
demonstrates that boosting WOB is not always a good
method to increase drilling efficiency.
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Table 5. Optimal WOB for drilling intervals Conclusions
Ta6auya 5. OnmumaabHas Hazpyska Ha 0010mo 04 UH- This paper demonstrates the practical use of ANN
mepea.10e Gyperusi to predict ROP from drilling parameters of wells in Ca

- ® .5 | = Tam oil _field, \(igtnam. Th_e ANN_modeI using bacl_<-
EE _E 5 S o %@g %g 5T = propagation training algorlthn_]_wnh 10 neurons in
S s £2 _|225|EE2E5{E 2| 5 _| hidden layer shows the ability to predict ROP
SF |gEg|DEE|ESgogEff|EEg accunal
S SES| 2522 SE5gysals 2 § The optimal value of WOB, when drilling through
EE = irss §§5 252522 £ 8 Miocene stratigraphy for three study wells in Ca Tam
s | EE2|SES|gEEsEE88|% 53] oil field, is from 3.6 to 4.4 tons (Table 5). This result
= E &E SEg|EEEER<EL| could be applied to other wells in the research region
5= E |86=|g°285 gg = PP . rch region.
< s =e= § Furthermore, this method can be applied similarly
S1:1595-1645| 4 29 5211 2455 | 1697 | for the optimization of other drilling parameters such
S2:1645-1695| 3.8 5.1 60.63 4798 [ 2637 | as RPM, FR, MW, etc.
gi: 1?2;—1;32 2-2 45-712 ?i-ig 5585-219 ;g‘;‘; Recommendation for future work is to update data
55:1795-1845] 3.4 4.73 75.12 6382 | 17.71 from new we!ls, collect data on (_Jther d“”'.ng
S6:1845-1895 | 44 422 79.78 64.00 | 2443 | Parameters and integrate the geomechanical properties
S7-1895-1933 ) 3.69 66.47 58.03 | 14.54 into the ANN model to increase the accuracy.
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