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The relevance of the research is determined by the possibilities of measuring the potential magnetic field, which has self-similar (fractal)
properties, as well as a practical tool for prospecting and exploration of iron ores. In the Esfordi area, this method was used by us for the
first time to identify, separate and interpret geophysical (magnetic) anomalies.

The main aim of this thematic and practical study is the qualitative interpretation of geophysical data, the application of new methods in
the prospecting and exploration of mineral deposits, modeling the geological environment and forecasting new promising areas.

Object: Esfordi region, Yazd province, Iran.

Methods. To obtain additional information about the subsurface, magnetometric data were used with their interpretation by the RTP
(reduction to the north magnetic pole) method. For modeling purposes, an artificial sample was made, consisting of a sphere, a cube and a
cuboid, and it was found that the fractal method can be used to separate anomalies for unipolar models (cube and cuboid).

Results. The results of the study were applied to the Esfordi region, where it was found that at a survey scale of 1:100000, there is a direct
relationship between the fractal method and the 3D model, which can be used to locate iron ore mineralization.
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Introduction

In today's complex world, where we are witnessing
advances in various technologies, especially in the mining
industry, new methods and technologies in estimating the
depth of anomalies during mineral exploration seem
necessary [1-11]. Studies on iron ores have also been
carried out in abundance in various formats [12-17],
because iron is widely used in various industries such as
automotive, electronics, etc. [18, 19]. To better advance,
magnetic phenomena must be studied. Isolation of
magnetic anomalies from the field and then an accurate
determination of its model is one of the most critical
parameters extracted from geophysical data interpretation
[20-24]. One of the experimental methods that emerged
with the advancement of technology and science was the
experimental geophysical method. As its name implies,
the experimental geophysical methods deal with the
physics of the earth and the surrounding atmosphere.
These methods are used to determine underground
reserves and resources such as reservoirs of hydrocarbons
and metal minerals, physical properties of the earth's
layers, separate the earth's layers, and the location of
geological structures. The methods used in geophysical

DOI 10.18799/24131830/2023/3/3861

exploration are based on physical principles. Magnetic
exploration is one of the oldest geophysical exploration
methods that has been used for many years in mineral
exploration and economic mineralogy, and even for
archaeological purposes. This method also identifies
magnetic sources between sedimentary layers such as
deep igneous or volcanic intrusions. In mineral
exploration, the magneto metric method is very effective
for exploring both magnetic and non-magnetic minerals
associated with magnetic minerals. Sedimentary rocks
usually have minor magnetic effects, so changes in the
intensity of the magnetic field at the earth's surface are
mostly related to lithological changes in basement rocks
or igneous intrusions. Minimal changes in the
concentration of magnetite during the diagenesis process
cause minimal anomalies. Various computational
methods are widely used in data processing, an essential
part of anomaly analysis. In this section, methods are
used to help separate specific anomalous components.
The measured magnetic field follows the principle of
inhibition of anomalies from different sources. These
principles are: (1) Remaining anomalies located in the
study area; (2) Deep and significant geological resources
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create regional components with long wave-lengths; (3)
Low wavelength components created due to tracking
errors and observation of shallow and small information
and sources.

One of the steps in the final interpretation is removing
the disturbing regional components and noises in the
anomalous field from the remaining field. This principle
is solved based on separating the remaining anomalies by
eliminating or weakening the regional anomalies and
noise [3, 4]. An important goal in interpreting potential
field data is to improve the resolution of observed data. In
magnetic exploration, in areas where there is a limited
outcrop, by determining the lateral changes of magnetic
susceptibility, information can be obtained not only about
the lithological changes but also about the structural
process of the area [23-26]. In potential field analysis,
many algorithms are designed to extract shallow
information [3, 27-29]. The method of anomaly
separation from the field can be divided into two groups,
which include structural (based on the spatial distribution
of data) and non-structural (based on the structural
distribution of data) [5, 29-33]. Classical statistics
assumed that statistical parameters would lead to a
normal distribution or normal log in previous years. This
assumption emphasizes the frequency distribution of
parameters, but spatial variability, particularly spatial
correlation information, is ignored [34-37]. The
difference between structural and non-structural methods
is that structural methods generalize the coordinates of
points and their positions. Generally, an anomaly with a
small amount in the field can reduce the overall anomaly.
Non-structural methods can be useful to solve some
problems according to the distribution and spatial
position of the sample [38], for example, we can refer to
the grade-area model in the fractal method [39]. The
concept of fractals to describe the modeling and analysis
of complex phenomena, processes of self-testing, or scale
immutability was described by Mandelbrot [40]. In the
last 40 years, the concept of fractal has expanded
significantly from geo-metric sets to multidimensional
contexts [2, 31, 41]. In recent years, the fractal method
has been introduced in earth sciences, physics, chemistry,
medicine and mineral processing and has become a
popular scientific topic in the scientific community [42].

So far, many algorithms have been devised to separate
the anomaly from the context, in other words, to identify
boundaries with different characteristics of the context. In
general, the main concerns in the diagnosis of anomalies
can be expressed in two cases: (1) How to identify the
field; and (2) Determining the possibility of an irregular
border.

Fractal and multi-fractal models are used to quantify
patterns such as geophysical data. Fractal and multi-
fractal modeling is widely used to differentiate various
mineralization [5, 16, 17]. This method has several
limitations, especially when boundary effects are
involved in irregular geometric data sets [18]. The
primary method used for all cases seems to be the
concentration-area method, which means that geophysical
distributions mainly satisfy the properties of a fractal
function. There is evidence that geophysical and
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geochemical data distribution has fractal behavior in
nature [19, 20]. This theory develops an alternative
interpretation validation and improves proper methods for
the analysis of geophysical distributions.

Before using statistical methods on actual data, they
are usually tested on artificial data to confirm their effect.
Due to the complexity of artificial calculations, magnetic
sources often replace simple geometric shapes (spheres,
prisms, or cubes) that are very representative of natural
geological sources [43]. Therefore, in this paper, to
express the effect of the cut-area model in the fractal
method on accurate data, we apply this method to an
artificial sample consisting of three simple geometric
shapes.

Research methodology

The Fractals result from the self-similarity of
parameters associated with scale instability and refer to
the property of a system that does not change with scale
change. Mandelbrot introduces fractals to describe
patterns composed of parts with a geometry (shape) and
are more or less similar to the general pattern regardless
of scale [44, 45]. There are different models for
distributing the fractal method, including number-size
model [46], concentration-area model [47-50] and
concentration-distance model [34]. Due to the complexity
of magnetic field issues, a variety of maps have been
developed by experts over the years, each of which
contains some form of exploratory information. In the
polarization map (RTP), due to the transfer of the
anomalous location to the magnetic pole, where the
earth's magnetic field becomes vertical, the effect of the
geographical location of the harvest site, i. e. the angles
of inclination and deflection, is eliminated. This
processing causes the location of the magnetic anomaly to
be corrected relative to the site of the mineralization, and
in fact, the magnetic anomaly is placed on top of the
deposit. Due to the nature of magnetic field vectoring and
the variation in inclination angle and deflection angle
concerning the magnetic equator, maximum magnetic
anomalies are transmitted directly from the sources, and
the anomalies are very asymmetric. This complicates the
interpretation of anomalies, especially at lower latitudes
[3]. Therefore, to counter this effect, Baranov proposed a
method for converting magnetic anomalies at any
magnetic latitude to anomalies based on the sheer
magnetism and the vertical field based on the Poisson
relation [22].

One of the methods based on fractal distribution is the
concentration-area one. This method, proposed by Cheng
and his colleagues, is based on an area that occupies a
unique scale in the study area [39]. Instead of the term
concentration, the term pole reversal is used in this
research, and the RTP-area model, i. e. specific areas that
occupy the polarized reversal levels in the study area, is
investigated.

The general formula of the model proposed by Cheng
and his colleagues is defined according by the equation
(1):

Alp < v)ap™; A(p 2 v)ap™®2, 1)
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where p is equal to the RTP plane and A (p) is the area of
the regions with p plane; v is the threshold values; a3 and
a, are the fractal dimensions [34, 44, 51-53].

This method has advantages over similar cases in
classical statistics:

(1) independence of data in the RTP-area fractal method;

(2) consideration of the geological situation in data
distribution;

(3) independence of standard or non-normal data.

This method considers the exact spatial position of the
samples to separate the anomaly from the background. In
addition, there is no need to delete out-of-line data in this
method because the fractal nature of the data
automatically removes these items [44, 45, 54, 55].

To obtain the enclosed area, the contour map of the
desired area should be prepared using software such as
Surfer, Geosoft, or GIS to calculate the area of each level
line [56-63]. After drawing the contour map of the data
for each cell, a value is specified that represents its RTP,
and each cell has its unique area. The levels are arranged
in ascending order, and for each repetitive level, only one
item is recorded along with its total areas in the table.
After performing the calculations, the whole logarithmic
diagram of the RTP area is drawn. An exponential

relationship should be observed in the diagram. The
threshold values are obtained from the breakpoints in the
last step, and the anomaly map is drawn based on the
threshold values [30, 41, 64, 65].

Artificial Data

A synthetic prototype was produced by Model vision
13.0 software [47, 66, 67]. In this example, three simple
geometric sources of a sphere, rectangular cube and
square cube, were used. The parameters used and the
coordinates of the midpoints of these three sources are
shown in Table. The deflection angle and magnetic
inclinations were 50 and 3 degrees, respectively, and the
magnetic field strength was selected in the modeling
range of 47000 nT. Fig. 1, a shows a three-dimensional
view of the artificial specimen.

Artificial data were generated on this model with 10 in
10 networking. According to the artificial data, a general
magnetic field map was created for this sample. The
general magnetic field map became the pole reversal map
because it does not accurately show the exact position of
the magnetic field on the ground [43, 52, 68-74]; Fig. 1,
b shows the RTP map.

Table. Geometric parameters of the three sources used
Taonuua. ['eomempuueckue napamempuvl mpex UCHOIb3YeMbIX UCTHOYHUKOS
Number Source Midpoint coordinates/meter Length/Tlnuna Magnetic resistance
Yucno Hcrounuk Koopaunatel cpejHeit Toukn/mMeTp Xfmeter Y/meter Zfmeter MarHuTHOE CONPOTUBIIEHHUE
X/metp Y/metp Z/metp
1 Sphere/Cdepa (143.1,880.7,300) 60 60 60 0,03
2 Cuboid/Ky6oun (596.9,773.4,200) 60 380 75 0,02
3 Cube/Ky6 (190.1,614.9,250) 150 150 150 0,03
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Fig. 1. Three-dimensional view of the sources used in the artificial model (a) and reversal map to the pole of the artificial

model (b)

Puc. 1. TpexmepHvlil 6U0 UCMOUHUKOG, UCNONB3YEMbIX 6 UCKYCCmEeHHoU modenu (8), u Kkapma pazeopoma K nomocy uckyc-

cmeennoti mooenu (b)

For the fractal model, we obtain the area of the levels
in Fig. 1, b. The distance of each level in this sample was
set to 0,1. Fig. 2, a shows an all-logarithmic RTP-area
diagram for artificial data. According to the thresholds
obtained from this diagram, the anomaly is separated
from the field in Fig. 2, b. As can be seen, the desired
anomaly for the square-cube source is well represented,
while for the rectangular cube source, there is little

separation. Due to this anomaly in the interpretation of
the spherical source is placed between the positive and
negative poles. In the whole logarithmic diagram,
negative data is removed, the RTP-area method alone
cannot separate the boundaries of such layers. However,
it is possible that in the areas where the boundaries of the
layers are most prominent, they are somewhat close to the
source of the square cube.

199




Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2023. V. 334. 3. 197-209
Kalvarzi AK. et al. Separation of magnetic anomalies using fractal method in the Esfordi region for iron exploration, Central East Iran

100000

LOG [AREA]

1 10
LOG [RTP]

a

1000

16.1
900 13.6

1

8
8

500

Y Direction (m)
2] 3
8 8
_-_4-\\
l |
7
é"
L O W
» ® &

0 100 200 300 400 500
X Direction (m)

b

Fig. 2. Full logarithmic diagram of RTP-area (a) and anomaly separation map from the field on artificial data (b)
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Case study

The study area is located on 1:100000 Esfordi in the
south of Yazd province. This area is located 15 km east of
Bafgh city and 14 km southwest of the Bafgh iron mine
(Fig. 3). Geologically, this area contains dolomite, shale,
sandstone along with tuff and acidic lavas (Fig. 4).
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in Upper Precambrian deposits, and its main minerals are
magnetite, ilmenite, hematite, and to a lesser extent,
pyrite. Gang apatite is present in relatively large amounts
in this ore. Esfordi iron ore, black spot, Mishdovan, and
Narigan ores are the most critical views of this deposit.
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Fig. 3. Schematic geological map of the Esfordi exploration area in Central East Iran
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The area in which the magnetometric survey has been
carried out has an extension of about 1,5 km in the east-
west direction and 1,7 km in the north-south direction. In
order to interpret the magnetic data in the study area,
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1320 points with a distance of 40 meters from the stations
and 20 meters from the profiles have been taken from
each other. After making the necessary corrections to the
data, a map of the whole magnetic field for the desired
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range was prepared (Fig. 4, a). The changes in this field
result from the Earth's magnetic field and local fields due
to the presence of a magnetic source in the range. In this
map, two anomalies are observed, one of which is in a
bipolar zone with an east-west trend.

Furthermore, another anomaly is in the center of the
range, the negative pole of which is widely around and
very irregular. It is important to note that the two
anomalies, due to their small distance, affect the
measurement of the related magnetic field. The nature of
the anomalies is bipolar, and since the angle of inclination
and magnetic deflection of the Earth is a function of the
geographical location of the measuring points, therefore,
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the shape of the source, in addition to magnetic
susceptibility, depends on the magnetic induction of the
Earth. This phenomenon is one of the factors
complicating the analysis of magnetic maps. To solve this
problem, a polarizing filter is used. In this case, the
anomalies are located vertically above the source. As
mentioned before, a pole in the desired range is prepared
to show the exact position of the anomalies on the map.
To prepare the reversal map to the pole in the deflection
angle and magnetic inclination range, 49 and 3,3 degrees
were applied on the whole magnetic field map,
respectively. Fig. 4, b shows the reversal map to the pole
of this range.
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Fig. 4. Map of the total magnetic field (a) and map of return to the pole (b)
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The distance of the levels of the reversal map to the
pole nT 1 was considered, and the area of each level was
calculated. The complete logarithmic diagram of the
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RTP-area was plotted according to Fig. 5, a. According to
Fig. 5, b, the anomaly is isolated from the field according
to the thresholds obtained from Fig. 5, a.
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Fig. 5. Full logarithmic diagram of RTP-area (a) and anomaly separation map from the background for the study area (b)
Puc. 5. Ilonnas noeapudpmuueckas ouazpamma RTP-pationa (a) u kapma omoenenus anomanuii om (oua 0ns u3yuaemou

meppumopuu (b)

To obtain the depth of anomalies, the area in which the
three anomalies are located was separated, and the depth
was estimated. Then, depth estimates were performed for
structural indicators and different window sizes, and the

results were displayed on the polarization map (Fig. 6).
After the examinations, a suitable structural index of 1 and
a suitable window size of 15x15 were found. This
diagnosis is estimated after various surveys on the map. It
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means that with different studies, this diagnosis does not
contain out-of-row values and all points are on the trend of
abnormalities. According to the anomaly results, A is a
sloping dyke which western part is less deep than its

364000
L
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eastern part, which indicates that the source has a slope to
the east. This anomaly in the western part of the depth is
about 10 40 meters. The depths of anomalies B and C are
also approximately 40 meters.
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Fig. 6. Estimation of the study area depth
Puc. 6. Kapma ¢ oyenxoii enybunvl uzyuaemot oonacmu

Since most field studies have an inherent complexity,
performing two-dimensional modeling for exploration
purposes does not seem sufficient, and the need for three-
dimensional modeling is well felt. Leading modeling is
one of the valuable methods for modeling. Because the
model parameters can be part of a proportional inverse
procedure, different model parameters are created for
modeling. Most of the leading models in the potential
field are based on simple integral equations that can
represent the magnetic distribution of the source in a
polygon [43]. After estimating the approximate position
and depth of the magnetic field anomaly using the
residual field analysis and estimating the depth, it is
possible to model the magnetic source three-
dimensionally (magnetic anomaly generating mass).

The mathematical process of predicting data based on
some physical or mathematical model is a specific set of

model parameters, available information, and source geometry.

We create an artificial model and use it to generate predicted
data. One of the critical parameters for performing advanced
modeling is the correct estimation of the magnetic self-
susceptibility of the anomalous generating mass. The most
important aspect of modeling is the simulation of horizontal
gradients, which can be observed by calculating and
comparing the observed horizontal derivatives and modeling
them. The amplitude of the modeled anomaly can be
compared by adjusting the adaptation of the magnetic contrast
properties in the final stage.
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In magnetometric impressions, the total composition of
the magnetic field is usually measured on a horizontal plane.
The purpose of the impressions is to determine the
magnetization distribution of the source, estimate the depth
of the source, and the direction of magnetization of the entire
source. According to the uncertainty principle in field
answers, the interpretive potential has difficulty achieving
the above answers, and this uncertainty is induced in
theoretical models. According to this principle, countless
theoretical models can create similar magnetic anomalies.
Minimizing the number of answers in modeling requires all
available geophysical and geological information. For
example, field sampling and determining the magnetic self-
susceptibility of samples in the laboratory can be one way to
reduce uncertainty. It should also be noted that surface
samples are not closely related to deeper samples.

Reducing the effect of this principle on modeling
results is possible in three ways: mathematics, geophysics,
and geology. The geophysical magnetization determined
by reverse modeling should not be much different from
the values measured in the laboratory. From a geological
point of view, it is necessary to observe the relationship
between the anomaly pattern and its generative structure
so that the chosen model is selected correctly at the
beginning of the simulation.

To compare the results of the fractal method discussed
in this paper, a three-dimensional simulation of the range
was performed according to the Lee—Oldenburg method.
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Using this method, the variable on which the
interpretation will be based is first decided, magnetic self-
acceptance or magnetic self-acceptance logarithm or a
function of magnetic self-acceptance. A multi-component
objective function is then constructed with sufficient
flexibility to produce various models. The form of this
objective function is such that it can be corrected for
acceptable mathematical undesirable aspects such as the
concentration of magnetic self-acceptance near the
surface, the substantial structure, or the presence of
negative magnetic self-acceptance. This objective
function compensates for unevenness in three spatial
directions and weighs based on the distribution of
profound magnetic susceptibility. Three-dimensional
auxiliary weighting functions in the objective function
can combine more information about the model [23].
Such information may be available from other
geophysical excavations, geological data, or the
interpreter's quantitative and qualitative understanding of
the geological structure and its relationship to magnetic
susceptibility.  These three-dimensional  weighting

functions can also be used to the answer questions about
the magnetic susceptibility properties found in previous
negative

inverters. In this approach, magnetic
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susceptibility is neglected by constructing a
transformation of variables and solving a nonlinear
reversal problem. Numerical solutions for inversion by
dividing the earth into large cells have been realized to
make relatively complex geological objects.

In this modeling, Mag3D software based on the Lee—
Oldenburg method was used. The final source model is
determined by preparing the data, entering them into the
software environment, and determining the required
parameters. For the study area, the dimensions of the
mesh were determined according to the area's dimensions
(length and width of the area), the length and width of the
mesh were 16 meters, and its height was 8 meters. Then
the magnitude of magnetic self-susceptibility to the
separation of the anomaly from the field values was
considered equal to 0,1 in the SI unit. The final model is
shown in Fig. 7. As can be seen in this figure, the two
sources of anomalies A and B in the range are identified,
confirming the previous breadth and depth results. The
source of the C anomaly is probably not present in the
results of this modeling because it did not have a good
scope in design. The maximum depth of the anomalies
has continued up to about 700 meters, which is unrealistic
because the accuracy of this method is low at great depths.

Fig. 7. Model obtained from the sources of the study area using the Lee—Oldenburg method
Puc. 7. Mooenv, nonyuennas uz ucCmouHuKos ucciedyemou meppumopuu no memooy Jlu—Onvoenbypea

Fig. 8, a shows a section of a three-dimensional
diagram of the magnetic susceptibility data of the target
area. To illustrate the point, Fig. 8, b shows the data
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having magnetic self-susceptibility between 0,07 and 0,08.
It can be seen that the existing masses have a source
almost similar to the square-cube model.
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Fig. 8. Three-dimensional form of the magnetic self-susceptibility of the study area (a) and sources with magnetic

susceptibility (b)
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Discussion and conclusions

According to the studies performed in the maps of the
total magnetic field and the rest of the magnetic field,
three anomalies in the range are clear and visible.
Different maps are being discussed that failed to pinpoint
the source of the anomaly. It is because the negative pole
of the magnetic anomaly is not clear. The polarization
map also confirms the possibility of a bipolar one for
anomalies. While in the quasi-gravitational map this
hypothesis can be refuted to some extent.

In this paper, the fractal is used to isolate magnetic
anomalies from the field. Due to the superiority of this
method over classical statistical methods, the RTP-area
method was used for this purpose. Considering that
artificial modeling is necessary to have more information
for fractal calculations on accurate data, an artificial
sample containing three types of sources was created. The
results show that the sources of the square-cube have a
relative proportion to the fractal models in the anomalous
separation from the field. Considering that the spherical
source has created two positive and negative poles in this
sample, it can be seen that this method has some
shortcomings in separating the anomalies between these
two poles. The isolated data in the case study show that
sources with a structure similar to the square-cube model
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