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The relevance. Diffusers, either as nozzles or constituent elements, are frequently used in many mechanisms and machines. In this re-
gard, the study of viscous fluid flow in diffusers aims to discover patterns of changes in the flow's hydrodynamic parameters, allowing bet-
ter understanding of the nature of flow as a function of Reynolds number. Following the results of the analysis of the study, conditions for
the proper construction of the mechanism unit, ensuring its reliable and durable operation will be revealed.

The main aim of this study is to determine the velocity profiles in the flat diffuser for a viscous incompressible fluid by integrating the sim-
plified Navier-Stokes differential equations under the established initial and boundary conditions, as well as the bifurcation point's depend-
ence on the opening angle and Reynolds number of the diffuser.

Objects: a flat diffuser in which viscous incompressible fluid moves. At the same time, revealing the patterns of changes of the hydrody-
namic parameters of the flow is of defining value when choosing the structural dimension of devices and mechanisms, the main part of
which is the flat diffuser.

Methods. To reveal the patterns of changes of the hydrodynamic parameters of the flow in a flat diffuser, the study is based on the funda-
mental nonlinear differential equations of viscous fluid mechanics, which in a general case are not subject to an exact mathematical solu-
tion. For integration in the nonlinear differential equations, due to the smallness, the nonlinear-convective terms are neglected, and the in-
ertial terms are also partially simplified. Such a simplification is justified if the velocities are very small or if the dynamic coefficient of vis-
cosity of the fluid is very large. A method for solving the boundary value problem was developed, and regularities for changing the flow pa-
rameters were obtained. According to the derived regularities, graphs of the change in velocity, pressure and shear stresses on the wall of
the fixed channel were plotted and the coordinates of the separation point were determined.

Results. Depending on the angle of the diffuser opening and the Reynolds number, a general solution of the approximating Navier-Stokes
equations was given. In accordance with the nature of the motion, the boundary conditions of the problem were established and the
boundary value problem was stated. A method for integrating a boundary value problem was developed, and regularities for the change in
velocities along the length of the diffuser were obtained for a parabolic distribution of velocities in the inlet sections. Graphs of the change
in radial velocities along the length and at a fixed value of the opening angle were constructed, a flow pattern and the transition of a single-
mode flow to multimode operation were obtained. For a fixed opening angle and Reynolds number, the conditions for flow separation from
a fixed wall were derived, where the flow velocity changes the sign.
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Introduction the experimental data. The problems of studying the pat-

Diffusers are widely used in various mechanisms and ~ terns of changes in the hydrodynamic parameters of the

machines, either in the form of a nozzle or as an integral
part. In this regard, the study of the viscous fluid flow in
the diffusers is aimed at identifying patterns of changes in
the hydrodynamic parameters, which enables to under-
stand the nature of the flow depending on the Reynolds
number. Based on the results of the analysis, the condi-
tions for the correct design of the mechanism assembly,
which ensures its reliable and durable operation, will be
revealed. Due to the great practical significance, this
problem has attracted the attention of many researchers.
The classical problem statement was first formulated
by G.B. Jeffery [1] and G. Hamel [2], who proposed the
solution of equations of viscous fluid motion in diffusers,
taking into account squares of components of velocities
and their product multiplication. In further studies, justi-
fications about the effectiveness of this approach were
made and solutions were proposed based on the results of
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viscous incompressible fluid in flat diffusers were studied
by S. Targ [3] and N. Slezkin [4].

However, the solution to such problems was reduced
to a system of nonlinear transcendental equations with a
complicated integration. Such an approach did not allow
making effective calculations for specific parameters of
the diffuser. Therefore, the authors proposed more suita-
ble methods for integrating the differential equations of
motion in the flat diffuser area. The main point of the
studies conducted is that a boundary value problem is
formulated and its analytical solution is obtained using
Navier—Stokes approximation. Following the solution
analysis results, the separation conditions of the flow
from the fixed channel are obtained. It should be noted
that when deriving these solutions, it was assumed that
the velocity on the diffuser axis cannot be equal to zero.
However, it became viable to find a class of zero velocity
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flows on the diffuser axis when solving this problem.
Nevertheless, by analyzing the results of these solutions,
it became possible to establish that the flows in the dif-
fuser shall experience bifurcation.

L.D. Akulenko et al. [5-9] studied the generalization of
the Jeffrey—Hamel problem solution, obtained conditions
for asymmetric stationary flows, and gave one-, two-, and
three-mode bifurcation solutions. Conditions for ensuring
stationary asymmetric and multi-mode solutions were
found for specific intervals of Reynolds numbers and open-
ing angles. Authors of [10] generalized the Jeffrey—Hamel
problem solution and deduced conditions of stationary
asymmetrical and multi-mode solutions for certain ranges
of Reynolds numbers and the diffuser opening angles.

In [11], the author is studying the evolution of the
main single-mode stationary flow of the viscous incom-
pressible fluid in the flat diffuser. The Jeffrey—Hamel
problem solution is obtained based on the opening angle
of the diffuser and Reynolds number. It is established that
starting from some critical value of the Reynolds number,
the existence of a stationary single-mode flow is impossi-
ble. The results of examining several laminar flow re-
gimes in a flat diffuser/confuser with a small opening an-
gle were presented by the authors in [12]. Consequently,
patterns of changes in the hydrodynamic parameters of a
viscous incompressible fluid was obtained through nu-
merical modeling based on the solution of Navier—Stokes
equations. The areas of existence and transitions of flow
regimes from stationary-symmetric to  stationary-
asymmetric and non-stationary ones in the diffuser and
confuser, depending on the Reynolds number are found.
The values of the Reynolds number, which determine the
ranges of the existence of these fluid flow regimes for
Newtonian and non-Newtonian fluids are given.

In [13], the author studied the flow regimes in a flat
diffuser with a small opening angle, based on the numeri-
cal solution of the Navier—Stokes equations for a viscous
incompressible fluid. The existence of stationary and non-
stationary flow regimes was determined, depending on
the Reynolds number. The conditions for the transition of
flow regimes in the diffuser from symmetric stationery to
asymmetric stationery and then to non-stationary asym-
metric ones are obtained. The ranges of the Reynolds
numbers for the existence of these regimes are given.

In [14, 15], F. Durst et al. present the results of an exper-
imental study of the flow in a symmetrical expanding chan-
nel. Experimental data on flow patterns and velocity profiles
in a channel with symmetrical expansion are presented. The
authors of [14] experimentally show that the flow in an
asymmetric channel with rectilinear expansion can have a
stationary and asymmetric nature at low Reynolds numbers.

The fluid flow in diffusers most often occurs in non-
stationary and turbulent regimes, therefore, a significant
part of the theoretical and experimental studies are devot-
ed to these very regimes in flat diffusers [16, 17].
R.W. Fox and S.J. Kline in [18] give the results of an ex-
perimental study of turbulent flows in curvilinear diffus-
ers, which is a continuation and generalization of
C. Moore and S.J. Kline's paper [19], where the turbulent
flows in diffusers with flat walls were studied.
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In [20], the authors obtained the criteria for classifying
separations in flat diffusers, as well as diagrams for de-
termining them. Flows in channels and in the diffuser
with a small opening angle and at low Reynolds numbers
have similar features. Free-jet flows and flows in rapidly
expanding channels are margin circumstances of the flow
in diffusers. The identification of the condition for viola-
tion of the flow symmetry in the flat diffuser and channel,
as well as bifurcations in the Jeffrey-Hamel problem
were performed in [21].

In [22], the idealized solution of the Jeffrey—Hamel prob-
lem for an expanding channel is proposed. Numerical results
for a two-dimensional flow in a wedge bounded by two cir-
cles are given. The outflow and bifurcation conditions, de-
pending on the Reynolds number are shown. A mathematical
model has been created based on studies of changes in the
hydrodynamic parameter pattern of a viscous incompressible
fluid in the transitional sections of flat pipes, which allowed
obtaining results with acceptable accuracy indicating motion
dynamics patterns [23]. Water absorption capacity of Irind
mine pumice depending on the particle size and absorption
time is presented in the paper [24].

Despite a large number of works on the hydrodynam-
ics of a viscous incompressible fluid, new approaches are
required to investigate the change in patterns of hydrody-
namic flow parameters in flat diffusers. Qualitative char-
acteristic parameters that determine the properties of the
motion of a viscous incompressible fluid in the flat dif-
fuser subject to the condition of constant flow rate are the
opening angle and the Reynolds number of the diffuser.

Main part

The study of the patterns of change in hydrodynamic
parameters of the fluid flow in a flat diffuser with a given
velocity profile in its initial section is of great practical
interest. Let us consider the problem of viscous fluid flow
development in the flat diffuser. The flat diffuser consists
of two flat surfaces inclined towards each other at an an-
gle of 2« (Fig. 1), directed along the x axis to infinity.
The motion in a flat diffuser will be considered in cylin-
drical coordinates r, ¢ starting with the zero point (Fig. 1).

Let’s assume that the patterns of radial distribution of
the liquid velocity at the inlet section of the diffuser is
parabolic, i. e. U,.:A(l—goz), at r=rg. The viscous fluid
flow in a flat diffuser is considered to be plane-parallel

. ov, . .
and steady. We will assume, that % is negligibly small
v
o’v,

compared to —

. Assuming also that v,<<v, and the

derivatives of v, to » will be small compared to the deriv-
atives by ¢. Discarding the indicated number in the equa-
tions of motion [3, 4], we obtain a system of approximate
equations:

2
o0 U O, L vOU )
o r 0 por 1’ o’
_o  2udv, @)
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where v and u are the kinematic and dynamic viscosity
coefficients, respectively, v, is the fluid velocity in radial
directions (Fig. 1). All the notations are well known [3, 4].
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\

Fig. 1. Calculation scheme of a flat diffuser
Puc. 1. Pacuemnas cxema niockoeo ougpghyzopa

Having in mind, that v, is a negligibly small value, we
can take v,~0, and the value v, can be replaced for a giv-
en section with an average flow rate U:

_ 9

2ar

Here Q is the fluid consumption through each section.
The condition of fluid flow constancy is derived as:

0= TU,, -rde. 4)

Substituting the regularity of the initial distribution of
the radial velocity in (4) we obtain:

a 2
0= Iur ryde = 2Ar00{1—%}

The average flow rate in the initial section of the dif-

fuser will be:
2
U, =4 (L—“J.
3

Then equation (1) can be written as:
0 0?
po __1ap v oo
or por r- op

(3)

Equations (2), (3) and (5) constitute a system of approx-
imate equations of fluid flow to identify patterns of chang-
es in the hydrodynamic parameters of a viscous fluid in a
flat diffuser. The characteristic flow rate U is taken to be
the rate included in the Reynolds number formula [3]:

Re = Ura .
v

Based on the condition in this mode, maintaining a con-

stant value of the number Re leads to dependence of U on r:

r r

2
A@—“}b
v =Dl )

To obtain universal solutions to the problem, we in-
troduce dimensionless variables u, v, i, x, p , assuming:

o,
i bj

v b roo_
u=—"-,V= qoyy/:ﬂ,x:—’p: pz, (6)
U, aU, a 7 0
where U, = —— 1is the average rate in the inlet sec-

ar,
tions of the diffuser.

Equations (2), (3) and (5) for the new variables (6)
(will take the form:

Vo @, v o

xox  ox rUe’ x*oy’

B v

oy  Uyryx Oy

u LV . ()
ox x xO0y

From the second equation of system (10), after inte-
gration over the angle w, the equation is defined:

Pley) =24 ), ®)
oro
where C(x) is an unknown function of x.
Differentiating (8) by x, we get:
aﬁ@;w)_z v 0(u), dCx)
Ox U,r, Ox \ x dx

If we substitute the expression (6) into the right side
of the first equation (9) and discard the member contain-

ing the value 8(u] as a member of a lower order, the

©)

ox \ x
system of equations (7) is finally transformed to the form:

l@l_ﬁ 0’u _dC(x)
xox x° oy’ dx

6l+ﬁ+lﬂ =0 s (10)
ox x xdy
. 2 1%
where designated a” = ———.
roa U,

To integrate the system of equations (10), the bounda-
ry conditions are established:
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1) conditions for adhesion between the liquid and the
wall’s surface:

x>0, y=£1, u=0, V=0, (11)
2) conditions for the symmetry of the velocity profile
along the flow section:

o
A _y ’
oy

3) conditions for the radial velocity distribution over
the input arc section are presented by some function f{ ),
i. e. when

y =0,

x=0, ~1<y<+1, u(l, p)=A(1-y7). (12)
From the solution of the equation of system (10) we
get the form of the sum, i. e.

u(x,w) = Z.O:Ec(x)cos/lkl//+ilfl/k(x)cos/1kt//. (13)

k=1 k=1

where Fy(x) and W(x) are continuous functions to be de-
termined. The value Fi(1) can be calculated from the
boundary condition (12), so we will have:

A(l—z//2):i}7k(1)coslkt//. (14)

k=1

By multiplying both parts of equation (14) by cosA, i
and integrating in the interval (-1; 1) we get:

1
A (1= y?)cos A, pdy =
-1

1% 1
:Zﬂ(l)jcoslkwcoslnwdy/. (15)

k=1 1

Using the orthogonality property of the function
{cosA,p}, 1. e.
0,4, #4,
LA =2,

and calculating the integral value on the left side of the
equation (15):

1
I cosA, wcosd, wdy = {

-1

4(_1)n+1
A

1
AJ (1-y*)cos A, wdy =

-1

we can get

where 4, = (2k - 1)% are the eigenvalues, the roots of

the eigenfunctions: cosA,y=0 .
The first equation of system (10), taking into account
(13), will be rewritten in the form:

Z Fl(x)cos A, +Z W/!(x)cos A,y =
k=1 k=1
a2 o
S AR (c0s Ay -
X k=l

2 o
—a—Zl,fW,((x)cosﬂkl//—xC’(x). (16)
X k=1
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We can expand the function C'(x) in a series as eigen-
functions:

C'(x) =Y A (x)cos Ly,
k=1

where

A (x)= IZC(x)coslkwdw (/llic(x) (17)

0 k=1

From equations (16), takmg into account (17), we can ﬁnd'
F'(x)+~% ’B" F(x) = LW (X)) + - 'B" W, (x)+ x4, (x)J
(:Bk = azﬂf )-

We choose an arbitrary function W(x) in a way, to
satisfy the conditions:

i@ P ()= ). (8)
i 2
F'(x)+i—kF(x)=0. (19)
Solving equation (18), we get:
Wk(x)zx*ﬂszk(x), (20)

where Bi(x) is the arbitrary constant to be determined.
Solvmg equatlons (20) and together, we obtain:

Bly(x)=—* "1 4,(x), whence

_1 k+l b - ,
Bk(x)=‘(12! 1 C et 1)
Solving equations (19), we get:
F(x)=C,x " (22)

Substituting the value of the functions By(x) and A4(x)
from equations (21) and (22) into (13) we will have:

u(x,p)=y AC,x7" cos A,y —

k=1

_xii L)k“x*ﬂ/%jitﬂgﬂcl(t)dt COSﬂklﬂ:
o ox| A, 4

© _1 k+1 x ) )
- Z{Aq — %Il"*“C’(t)dt}x‘ﬁ* cos A, w. (23)
k=1

k 1

Substituting the value u(x,y) from (23) into the sec-
ond equation of system (10) for determining the V(x,y)
function, we get the equation:

V(xy)
_7 =

( 1)k+1 [ B+l -5
J.t RC(dt | xT cos Ay +
k 1

0
—xkz;a{ACk
+Z{AC

After simple transformatlons, the last equation will
take the form:

.[tﬂ‘“C (t)dt} A cos Ay
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v (xy) _
oy

4A(_1)k+1 B (_1)k+1 y
o A Ay
Z B —Dx s . ! ! e cos A, .
k=1 [ B+ vy X ,

" C'()dt - ———C' (1)
! i

We choose an arbitrary function C(x) so that to s
atisfy the condition:

ﬂ,f +2

I B+l _X ’ —
Jl't C'(t )t 7 _lc(x) 0.

Denoting tﬂkZHC’(t):y(x) the last equation is trans-
formed into the form:

24

Qx_l {(x)=0.

K

[ Ae)ar -
1
Differentiating it with x, we get:

()82 ~2b()=00r L iy (x)) -

from where y(x)=xﬂ‘

(82 -2)

Taking in mind the value y(x) for C'(x) the equation is

defined as:
C'(x)=x"7,
where
x?-1 )
2x?

Taking into account conditions (24), the equation for

determining the function v(x, i) will take the form:

v (x.y) s 44D
ow Z(ﬂk Dx- z

Integrating this equation in the interval (-1;¥) and
keeping in mind the boundary conditions (11), it can be
expressed as:

)= 3t HCD B D

(25)

Clx)=c()+

cos A, .

[sin 4,y +(=1)"],

k

when —1<y<0, (26)
© k+1 2
N e ]
k=1 k
when 0<y<1. (27)

Substituting the eigenvalues into equations (26) and
(27), we ﬁnally get'

V(x,p)=— ( D'sin(k — 0.5) 7y +1],

P (2k 1)
when —1<y<0,
644 (B -1)

14 _ -5 k
(xp) = ; k=D
when 0<y<I.

For the function u(x, ), taking into account the values
Crand C'(x), the formula will be expressed as:

L1 [(=D)'sin(k — 0.5) 7],

4A(- 1)A+1 ( 1)k+1 xpf-l_l >
u(x,p)= *cosA, p.
;{ 2 A Bi-1 !
Taking into account the value of the eigenvalues
Va
2 =2k —1)5,

- 44x7% x—x A
uwy) = Z[ =057 a(k— 05\ — 1)} )
x(=1)"*" cos[(k — 0.5)z]w. (28)
The resulting solution satisfies all boundary conditions.
We can calculate the patterns of pressure change from
(7), (25) and (28):

we finally get:

p(x,y) =
2w i LS S SN
U, S| (k=05 x(k-0.5)(F -1)

2

x(=1)*" cos[(k — 0.5) ]y + C(1) + _21
2x

(29)

The value of constant integration is calculated from
the initial condition, at x =1, p(x,)= p, , and we get:

_ v &4d(-1)
C(1)=p,(10)- . (0
( ) pO( ) UOI’O ; Az
As
441 324 (1)
- - =4
,Z; 2 7 ;(%-1)3
From (30) we can get:
_ 2vA
c(1)=p,(1,0)- : (31)
0o

Substituting the value C (l) from (31) into (29) we

finally get the pattern of pressure change along the length
of the flat diffuser:

p(x,y) - p(1.0)=

- 4yt ' ox A
2v A_Z 3 3 2 X
=5 S P (k-05)° k—05)A—1)| b+
P
" (1) cos[(k — 0.5) ]y
+)cz—l
2x?

On the wall of the stationary channel, due to the ve-
locity gradient and viscosity, shear stresses are formed,
which is determined by the formula [4]:

ov, v
Tr(p:/u[l o, +¢—¢]'
’ r op or r

In view of the negligible transverse velocity compo-
nent v, compared to the derivative of v, tangential stress
on the angle of ¢, the shear stress on the diffuser (32)
wall will be determined by the formula:

ov,
T=
r 8(/) oc

(32)
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or dimensionless form:
vl
aUyr, x Oy

(33)

T =

y=l

Substituting the expression for the radial velocity (28)
into (33) we obtain the formula for determining the di-
mensionless shear stress on the diffuser wall:

Fo_ 14 .°° x72 xﬁkl_ 4Ax’ﬂkz’1 “
anro k=1 (ﬂkz _1) ﬂz(k —0.5)2
(=1)" Sinl(k = 0.5)zly |, . (34)

Based on the expression obtained, we get the place of
flow separation from the diffuser wall in accordance with
the condition, that separation occurs at the place, where
the shear stresses become zero:

(f)y/:l =0.

From the last equation, taking into account (34), for
determination of the unknown parameter, we obtain:

A
2 (k—05)

2
- —pE-1
x2=xh

(5 -1)

Discussion of the results

Based on the solutions obtained, we study the nature
of the flow features in a flat diffuser. From the obtained
equations for the distribution of velocities u(x,y) and
V(x,p) it follows that for x—oo, wu(co,)—0  and
V(x,)—0. These conditions are fully consistent with the
condition of constant flow.

The graphs were plotted in order to visualize the pat-
terns of changes in the radial velocity u(x,y) along the
transverse section and along the length of a flat diffuser,
as well as the shear stress on the wall of a fixed channel,
depending on the opening angle @=20° 10°, 5° and the
Reynolds number Re=20, 40, 60, 80, 100, 110. Fig. 2-5
show the indicated graphs for cases @=20° and 5° at
Re=60 and Re=70.

Numerical calculations were carried out at a constant
value: 4=0.7.

The separation point is a special point for the shear
stress function (32) where

Bi-1=00or 4; =aRe. (35)

Under condition (35), the value 7 is undefined. The
indeterminacy is found according to the L'Hopital's rule
[6]. As a result, it turns out:

© -2 _ _-p- iy
z 1121’1’1 X zx _ 2.8a Rezx (_ 1)k+l -0
k=1 Aot (,Bk _1) B
whence follows the condition
2.8
28 x|coorx=expoS. (36)
aRe aRe
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0.7 ¢
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Fig. 2. Graphs of changes in the radial velocity u(x,y) in a
flat diffuser at an opening angle a=20° and the
Reynolds number Re=60. A) along the cross-section
at 1. x=1.03, 2. x=1.05, 3. x=1.2, 4. x=1.5, 5. x=2.0,
6. x=3.0; B) lengthwise at 1. y=0.1, 2. y=0.3,
3. wy=0.51,4. v=0.7, 5. y=0.9

Puc. 2. I'paghuxu usmenenus paouanvhou ckopocmu  u(x, W)
6 niockom ougghyzope npu yene pacmsopa a=20°u
yucne Petinonvoca Re=60: A) no nonepeunomy ce-
yenuto npu 1. x=1.03, 2. x=1.05, 3. x=1.2, 4. x=1.5,
5. x=2.0, 6. x=3.0; B) no onune npu 1. y=0.1, 2.
w=0.3,3. y=0.51, 4. y=0.7, 5. y=0.9

upy)

0.010

0.005

-0.005

-0.010

Fig. 3. Graph of changes in shear stresses in a flat diffuser
at a=20° and Reynolds numbers 1. Re=10),
2. Re=20, 3. Re=30, 4. Re=40

Puc. 3. I'pagux usmeHnenus xacamenvHuIX HANPAHCEHULl 6

nnockom ougghysope npu a=20°u uucnax Petinono-
oca 1. Re=10, 2. Re=20, 3. Re=30, 4. Re=40
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15 20 25 a0 X

B

Fig. 4. Graphs of changes in the radial velocity u(x,y) in a
flat diffuser at an opening angle a=5° and the
Reynolds number Re=60: A) along the cross-section
at 1. x=1.03, 2. x=1.05, 3. x=1.2, 4. x=1.5, 5. x=2.0,
6. x=3.0; B) lengthwise at 1. y=0.1, 2. y=0.3,
3. w=0.51,4. wv=0.7, 5. y=0.9

Puc. 4. I'pachuxu usmenenus paouanvrot ckopocmu  u(x, )
6 niockom oughgysope npu yene pacmeopa o=3°u
yucne Petinonvoca Re=60: A) no nonepeunomy ce-
yenuto npu 1. x=1.03, 2. x=1.05, 3. x=1.2, 4. x=1.5,
5. x=2.0, 6. x=3.0; B) no onune npu 1. y=0.1, 2.
v=0.3, 3. y=0.51,4. y=0.7, 5. y=0.9

T, 40

0.010

00o

-0020

-0030F

Fig. 5. Graph of changes in shear stresses in a flat diffuser
at a=5°and Reynolds numbers 1. Re=10, 2. Re=20),
3. Re=30, 4. Re=40, 5. Re=50, 6. Re=60

Puc. 5. I'pagux usmeHnenus xacamenvHuIX HANPA’CEHULl &
naockom oughgysope npu a=5°u uuciax Peiinonso-
ca 1. Re=10, 2. Re=20, 3. Re=30, 4. Re=40, 5.
Re=50, 6. Re=60

For a visual representation of the place of separation, a
graph of the function x from oRe (36) is shown in Fig. 6.
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Fig. 6. Function graph x from aRe
Puc. 6. I'pagux pynxyu x om aRe

The analysis of the numerical calculation results are
presented in the form of graphs (Fig. 2, B; 3; 4, B; 5; 6)
showed that the coordinates of the separation points were
determined depending on the opening angle and Reynolds
number. The viscous liquid flow to the separating point is
considered stationary and strictly flat-parallel and, ac-
cording to the results of calculations, the hydrodynamic
parameters are strictly symmetrical (Fig. 2, 4). The nature
of the flow is disturbed after the separation point, and the
obtained solutions do not provide accurate results. How-
ever, they can be used for qualitative analysis. At the sep-
aration points, the sign of the shear stress and radial ve-
locity change. However, they can be used for qualitative
analysis. At the separation points, the sign of the shear
stress and radial velocity change.

It can be seen from the graph that the coordinates of
the separation point exactly match the data determined
from the graphs. In addition, it can be seen that the condi-
tions for continuous flow in a flat diffuser at small open-
ing angles are possible at significantly higher Reynolds
numbers. As a result, the single-mode stationary flow is
sharply reduced (Fig. 2, 3), as a result of which the sta-
tionary regime is disturbed. Multimode flow starts, ac-
companied by various pulsation processes and unstable
operation of the diffuser, where the obtained solutions are
invalid. The main goal of diffuser design is to ensure a
steady mode of operation, which can be achieved by
choosing the optimum dimensions.

Conclusion

Based on the study results, the following conclusions
were formulated:

o the features of the viscous fluid flow in flat diffusers
are determined;

o the method for solving a boundary value problem was
developed, and formulas for calculating radial and
transverse velocities, shear stresses on the wall of a
fixed channel, and pressure along the length of the
diffuser were obtained;

o the graphs of changes in the flow's hydrodynamic pa-
rameters and shear stress on the channel wall were
designed,;

o the coordinate of the flow separation point was de-
termined using the opening angle and the Reynolds
number, which is the main parameter of the diffuser.
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The obtained solutions of the approximating Navier—
Stokes equations for identifying the patterns of changes in
hydrodynamic parameters in a flat channel, make it pos-
sible to identify the main point of ongoing processes and
determine the bifurcation point coordinates from the dif-
fuser opening angle and the Reynolds number. The criti-
cal values of the Reynolds number are also determined in
case the regime transfers from symmetrical to asymmet-
rical. The pressure and shear stress regularities of varia-
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1 HaumoHanbHbIi YHUBEPCUTET apXUTEKTYPbI U CTPOUTENBCTBA APMEHUH,
Pecnybnuka Apmenns, 0009, r. EpesaH, yn. TepbsiHa, 105.

AxkmyanbHOCMb. B pasnuyHbix MexaHu3mMax u MawuHax Wupoko ucnons3yromes duggy3opsl, nubo 8 sude Hacadku, 1ubo 8 kayecmse
cocmasHoll yacmu. B cea3u ¢ amum uccredosaHue 0UXeHUs 853KOU Xudkocmu 8 Oughghy3opax HanpasieHo Ha 8bifereHue 3aKoHo-
mepHocmeli usMeHeHuUs1 2uOpoOUHaMUYECKUX napamempos NOMOoKa, Ymo No38OIUM Ty4Le NOHSIMb Xapakmep O8LXKEHUS 8 3a8UCUMO-
cmu om yucna PeliHons0ca. 1o pesynsmamam aHanu3o8 uccredogaHus 8bIsesmcs yCrogusi N0 npasuibHOMY KOHCMPYUPOBaHUI y3na
mexaHu3ma, obecneyusarowe2o e20 Ha0exHyk U don2oseyHyio pabomy.

Lenbro Hacmoswel pabombi sensemcsi uccre0ogaHue 3aKOHOMEPHOCMeU UMeHeHUsT 2UOPOAUHaMUYECKUX napaMempos 8s3KOU He-
cxumaemoll xudkocmu 8 niockom dughghysope u onpedenieHue napaMempog NomMoka 8 (huKCUPOBAHHOM CEYEHUU.

06nexkmbi: ninockuli dughghy3op, 8 KOMopom 08u2aemcsi 8si3kas HeCxKuMaemas xuodkocme. [pu 3mom 8bisieeHue 3akoHoMepHocmel
U3MEHeHUs 2uOpoOUHaMUYeCKUX napamMempog Nomoka umeem onpedensouiee 3HayeHue npu 8bI60pe KOHCMPYKMUSHbIX pa3vepos an-
napamog U MexaHu3M08, OCHOBHOU Yacmbto KOMOpbIX A8nsemcs nockuti dughgy3op.

MemodbI. B ocHogy uccredogaHusi no 8bISBMIEHUI0 3aKOHOMEPHOCMEU USMEHEHUS 2UOPOOUHaMUYeCcKUX napaMepos Nomoka 8 NiiocKom
Ouchhysope 3anoxeHbl pyHOameHmarnbHble HenuHelHble OupepeHyUabHbie ypasHEHUs MeXaHUKU 853Kol Xudkocmu, Komopbie 8
obuwiem cryyae He noddaromcs MOYHOMY Mamemamu4yeckoMmy peweHur. C Uenbl UHMe2puposaHusi 8 HeUHeUHbIX OugpdepeHyuass-
HbIX ypasHeHUsiX, 88UAY Manocmu, OmbpOWEHbI HEUHEUHO-KOHBEKMUBHbIE YTEHbI, @ MakXe YNPOWEHb! UHEPUUOHHBIE YileHbl. Takoe
ynpoweHue onpagdaHo, ecru CKopocmu 8ecbMa Marbi Unu ecnu OuHaMuyeckuli KoaghgbuyueHm 8a3kocmu KUuOKOCMU 8ecbMa 8esuUK.
PaspabomaH memod peweHus Kpaegol 3adayu, nomy4eHb 3aKOHOMEPHOCMU U3MEHeHUs napamempog nomoka. 1o ebieedeHHbIM 3aKo-
HOMEPHOCMSM NOCMPOEHbI 2pachuku USMEHEHUS cKopocmu, 0asneHus U KacamerbHbIX HanpskeHul Ha CmeHKe Heno0BUXHO20 KaHasa
u onpederneHbl KOOPOUHaMbI MOYKU OMpbIBa.

Pesynbmamel. B 3agucumocmu om yena pacmeopa duchgpy3opa u yucna PeliHonedca 0aHO obujee peweHue annpoKCUMUPYOUWUX
ypasHeHull Hasse-Cmokca. B coomeemcmeuu ¢ xapakmepom O0B8UXEHUS yCmaHOBMeHbI epaHUYHble ycrosus 3adayu u chopMynuposa-
Ha Kpaegasi 3adaya. PaspabomaH Memod uHmeapuposaHusi Kpaegol 3adayu, nomyyeHbl 3aKOHOMEPHOCMU U3MEHeHUs: ckopocmel no
OnuHe dughghy3opa npu napabonuyeckom pacnpedeneHuu ckopocmel 80 8X00HOM cedeHuu. [TocmpoeHbl epaghuku U3MeHeHUs paduarb-
HbIX ckopocmeli no OnuHe U npu hUKCUPOBAHHOM 3HAYEHUU yania pacmeopa, NoydeHa kapmuHa meyeHus u nepexod 00HOMod08020
meyeHust K MH020M0O08bIM pexumam. [Tpu GhuKCUPOBaHHOM 3Ha4YeHUU yena pacmeopa u qucna PeliHomb0ca 8b18edeHbI ycrosusi ompbi-
8a nomoka om HenodBUXHOU CMEHKU, NPU KOMOPKIX CKOPOCMb NOMOKa MEHsem 3Hax.

Knroueenie crosa:
Oucpehysop, npohusib ckopocmu, pacnpedeneHue OasneHus, npeden ycmolyugocmu, 8si3kast XUOKOCMb, meyeHue XUdkocmu.
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Capyxanan Apecmax Apamaucosuy, TOKTOp TEXHUYCCKUX HAyK, Mpodeccop, 3aBeayomuid kageapoi BOIHBIX CH-
CTeM, THAPOTEXHUKH M THIPOIHEPTETUKH HanmoHansHOr0 YHUBEPCHTETa apXUTEKTYPBI i CTPOUTENBCTBA APMEHHH.
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