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The relevance. Diffusers, either as nozzles or constituent elements, are frequently used in many mechanisms and machines. In this re-
gard, the study of viscous fluid flow in diffusers aims to discover patterns of changes in the flow's hydrodynamic parameters, allowing bet-
ter understanding of the nature of flow as a function of Reynolds number. Following the results of the analysis of the study, conditions for 
the proper construction of the mechanism unit, ensuring its reliable and durable operation will be revealed.  
The main aim of this study is to determine the velocity profiles in the flat diffuser for a viscous incompressible fluid by integrating the sim-
plified Navier–Stokes differential equations under the established initial and boundary conditions, as well as the bifurcation point's depend-
ence on the opening angle and Reynolds number of the diffuser. 
Objects: a flat diffuser in which viscous incompressible fluid moves. At the same time, revealing the patterns of changes of the hydrody-
namic parameters of the flow is of defining value when choosing the structural dimension of devices and mechanisms, the main part of 
which is the flat diffuser. 
Methods. To reveal the patterns of changes of the hydrodynamic parameters of the flow in a flat diffuser, the study is based on the funda-
mental nonlinear differential equations of viscous fluid mechanics, which in a general case are not subject to an exact mathematical solu-
tion. For integration in the nonlinear differential equations, due to the smallness, the nonlinear-convective terms are neglected, and the in-
ertial terms are also partially simplified. Such a simplification is justified if the velocities are very small or if the dynamic coefficient of vis-
cosity of the fluid is very large. A method for solving the boundary value problem was developed, and regularities for changing the flow pa-
rameters were obtained. According to the derived regularities, graphs of the change in velocity, pressure and shear stresses on the wall of 
the fixed channel were plotted and the coordinates of the separation point were determined. 
Results. Depending on the angle of the diffuser opening and the Reynolds number, a general solution of the approximating Navier–Stokes 
equations was given. In accordance with the nature of the motion, the boundary conditions of the problem were established and the 
boundary value problem was stated. A method for integrating a boundary value problem was developed, and regularities for the change in 
velocities along the length of the diffuser were obtained for a parabolic distribution of velocities in the inlet sections. Graphs of the change 
in radial velocities along the length and at a fixed value of the opening angle were constructed, a flow pattern and the transition of a single-
mode flow to multimode operation were obtained. For a fixed opening angle and Reynolds number, the conditions for flow separation from 
a fixed wall were derived, where the flow velocity changes the sign. 
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Introduction 
Diffusers are widely used in various mechanisms and 

machines, either in the form of a nozzle or as an integral 
part. In this regard, the study of the viscous fluid flow in 
the diffusers is aimed at identifying patterns of changes in 
the hydrodynamic parameters, which enables to under-
stand the nature of the flow depending on the Reynolds 
number. Based on the results of the analysis, the condi-
tions for the correct design of the mechanism assembly, 
which ensures its reliable and durable operation, will be 
revealed. Due to the great practical significance, this 
problem has attracted the attention of many researchers. 

The classical problem statement was first formulated 
by G.B. Jeffery [1] and G. Hamel [2], who proposed the 
solution of equations of viscous fluid motion in diffusers, 
taking into account squares of components of velocities 
and their product multiplication. In further studies, justi-
fications about the effectiveness of this approach were 
made and solutions were proposed based on the results of 

the experimental data. The problems of studying the pat-
terns of changes in the hydrodynamic parameters of the 
viscous incompressible fluid in flat diffusers were studied 
by S. Targ [3] and N. Slezkin [4]. 

However, the solution to such problems was reduced 
to a system of nonlinear transcendental equations with a 
complicated integration. Such an approach did not allow 
making effective calculations for specific parameters of 
the diffuser. Therefore, the authors proposed more suita-
ble methods for integrating the differential equations of 
motion in the flat diffuser area. The main point of the 
studies conducted is that a boundary value problem is 
formulated and its analytical solution is obtained using 
Navier–Stokes approximation. Following the solution 
analysis results, the separation conditions of the flow 
from the fixed channel are obtained. It should be noted 
that when deriving these solutions, it was assumed that 
the velocity on the diffuser axis cannot be equal to zero. 
However, it became viable to find a class of zero velocity 
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flows on the diffuser axis when solving this problem. 
Nevertheless, by analyzing the results of these solutions, 
it became possible to establish that the flows in the dif-
fuser shall experience bifurcation. 

L.D. Akulenko et al. [5–9] studied the generalization of 
the Jeffrey–Hamel problem solution, obtained conditions 
for asymmetric stationary flows, and gave one-, two-, and 
three-mode bifurcation solutions. Conditions for ensuring 
stationary asymmetric and multi-mode solutions were 
found for specific intervals of Reynolds numbers and open-
ing angles. Authors of [10] generalized the Jeffrey–Hamel 
problem solution and deduced conditions of stationary 
asymmetrical and multi-mode solutions for certain ranges 
of Reynolds numbers and the diffuser opening angles. 

In [11], the author is studying the evolution of the 
main single-mode stationary flow of the viscous incom-
pressible fluid in the flat diffuser. The Jeffrey–Hamel 
problem solution is obtained based on the opening angle 
of the diffuser and Reynolds number. It is established that 
starting from some critical value of the Reynolds number, 
the existence of a stationary single-mode flow is impossi-
ble. The results of examining several laminar flow re-
gimes in a flat diffuser/confuser with a small opening an-
gle were presented by the authors in [12]. Consequently, 
patterns of changes in the hydrodynamic parameters of a 
viscous incompressible fluid was obtained through nu-
merical modeling based on the solution of Navier–Stokes 
equations. The areas of existence and transitions of flow 
regimes from stationary-symmetric to stationary-
asymmetric and non-stationary ones in the diffuser and 
confuser, depending on the Reynolds number are found. 
The values of the Reynolds number, which determine the 
ranges of the existence of these fluid flow regimes for 
Newtonian and non-Newtonian fluids are given. 

In [13], the author studied the flow regimes in a flat 
diffuser with a small opening angle, based on the numeri-
cal solution of the Navier–Stokes equations for a viscous 
incompressible fluid. The existence of stationary and non-
stationary flow regimes was determined, depending on 
the Reynolds number. The conditions for the transition of 
flow regimes in the diffuser from symmetric stationery to 
asymmetric stationery and then to non-stationary asym-
metric ones are obtained. The ranges of the Reynolds 
numbers for the existence of these regimes are given. 

In [14, 15], F. Durst et al. present the results of an exper-
imental study of the flow in a symmetrical expanding chan-
nel. Experimental data on flow patterns and velocity profiles 
in a channel with symmetrical expansion are presented. The 
authors of [14] experimentally show that the flow in an 
asymmetric channel with rectilinear expansion can have a 
stationary and asymmetric nature at low Reynolds numbers. 

The fluid flow in diffusers most often occurs in non-
stationary and turbulent regimes, therefore, a significant 
part of the theoretical and experimental studies are devot-
ed to these very regimes in flat diffusers [16, 17]. 
R.W. Fox and S.J. Kline in [18] give the results of an ex-
perimental study of turbulent flows in curvilinear diffus-
ers, which is a continuation and generalization of 
C. Moore and S.J. Kline's paper [19], where the turbulent 
flows in diffusers with flat walls were studied. 

In [20], the authors obtained the criteria for classifying 
separations in flat diffusers, as well as diagrams for de-
termining them. Flows in channels and in the diffuser 
with a small opening angle and at low Reynolds numbers 
have similar features. Free-jet flows and flows in rapidly 
expanding channels are margin circumstances of the flow 
in diffusers. The identification of the condition for viola-
tion of the flow symmetry in the flat diffuser and channel, 
as well as bifurcations in the Jeffrey–Hamel problem 
were performed in [21]. 

In [22], the idealized solution of the Jeffrey–Hamel prob-
lem for an expanding channel is proposed. Numerical results 
for a two-dimensional flow in a wedge bounded by two cir-
cles are given. The outflow and bifurcation conditions, de-
pending on the Reynolds number are shown. A mathematical 
model has been created based on studies of changes in the 
hydrodynamic parameter pattern of a viscous incompressible 
fluid in the transitional sections of flat pipes, which allowed 
obtaining results with acceptable accuracy indicating motion 
dynamics patterns [23]. Water absorption capacity of Irind 
mine pumice depending on the particle size and absorption 
time is presented in the paper [24]. 

Despite a large number of works on the hydrodynam-
ics of a viscous incompressible fluid, new approaches are 
required to investigate the change in patterns of hydrody-
namic flow parameters in flat diffusers. Qualitative char-
acteristic parameters that determine the properties of the 
motion of a viscous incompressible fluid in the flat dif-
fuser subject to the condition of constant flow rate are the 
opening angle and the Reynolds number of the diffuser. 

Main part 
The study of the patterns of change in hydrodynamic 

parameters of the fluid flow in a flat diffuser with a given 
velocity profile in its initial section is of great practical 
interest. Let us consider the problem of viscous fluid flow 
development in the flat diffuser. The flat diffuser consists 
of two flat surfaces inclined towards each other at an an-
gle of 2  (Fig. 1), directed along the x axis to infinity. 
The motion in a flat diffuser will be considered in cylin-
drical coordinates r,  starting with the zero point (Fig. 1). 

Let’s assume that the patterns of radial distribution of 
the liquid velocity at the inlet section of the diffuser is 
parabolic, i. e. r=A(1– 2), at r=r0. The viscous fluid 
flow in a flat diffuser is considered to be plane-parallel 

and steady. We will assume, that 
r

r  is negligibly small 

compared to
2

2
r . Assuming also that r and the 

derivatives of r to r will be small compared to the deriv-
atives by . Discarding the indicated number in the equa-
tions of motion [3, 4], we obtain a system of approximate 
equations: 

2

2

2

1 rrr
r rr

p
rr

,  (1) 

  02 r

r
p ,                (2) 
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01
rrr

rr ,         (3) 
where  and  are the kinematic and dynamic viscosity 
coefficients, respectively, r is the fluid velocity in radial 
directions (Fig. 1). All the notations are well known [3, 4]. 

 

 
Fig. 1.  Calculation scheme of a flat diffuser 
Рис. 1.  Расчетная схема плоского диффузора 

Having in mind, that  is a negligibly small value, we 
can take =0, and the value r can be replaced for a giv-
en section with an average flow rate U: 

r
QU

2
.
 

Here Q is the fluid consumption through each section. 
The condition of fluid flow constancy is derived as: 

 
rdQ r .               (4)

 
Substituting the regularity of the initial distribution of 

the radial velocity in (4) we obtain:  

3
12

2

00 ArdrQ r .
 

The average flow rate in the initial section of the dif-
fuser will be: 

3
1

2

0 АU . 

Then equation (1) can be written as: 

2

2

2
1 rr

rr
p

r
U

            
.(5)

 
Equations (2), (3) and (5) constitute a system of approx-

imate equations of fluid flow to identify patterns of chang-
es in the hydrodynamic parameters of a viscous fluid in a 
flat diffuser. The characteristic flow rate U is taken to be 
the rate included in the Reynolds number formula [3]: 

UrRe .
 

Based on the condition in this mode, maintaining a con-
stant value of the number Re leads to dependence of U on r: 

r

rA

r
rU

U
0

2

00 3
1

.
 

 To obtain universal solutions to the problem, we in-
troduce dimensionless variables u, v, , x, p , assuming: 

2
0 0 0 0

, , , , ,r r pu V x p
U U r U

   (6) 

where 
0

0 2 r
QU

 
is the average rate in the inlet sec-

tions of the diffuser. 
Equations (2), (3) and (5) for the new variables (6) 

(will take the form: 

 
.0V1

02
x
1 

00

22

2

2
00

xx
u

x
u

u
xrU

p
x

u
Urx

p
x
u

             
(7)

 

 
From the second equation of system (10), after inte-

gration over the angle , the equation is defined: 

 
)(2,

00

xC
x
u

rU
xP ,          (8)

 
where C(x) is an unknown function of x. 

Differentiating (8) by x, we get:  

dx
xdC

x
u

xrUx
xP )(2,

00

.           (9)
 

If we substitute the expression (6) into the right side 
of the first equation (9) and discard the member contain-

ing the value 
x
u

x
 as a member of a lower order, the 

system of equations (7) is finally transformed to the form: 

 
0V1

)(1
2

2

2

2

d
d

xx
u

x
u

dx
xdCu

x
a

x
u

x

,          (10) 
 

where designated .
0

2
0

2

Ur
a  

To integrate the system of equations (10), the bounda-
ry conditions are established:  
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1) conditions for adhesion between the liquid and the 
wall’s surface:  

x>0, =±1, u=0, V=0,                           (11) 
2) conditions for the symmetry of the velocity profile 

along the flow section: 

0,0 u
,
 

3) conditions for the radial velocity distribution over 
the input arc section are presented by some function f( ), 
i. e. when  

x=0, –1≤ ≤+1, u(1, )=A(1– 2).         (12)  
From the solution of the equation of system (10) we 

get the form of the sum, i. e. 

1 1

( , ) ( )cos ( )cos .k k k k
k k

u x F x W x     (13) 

where Fk(x) and Wk(x) are continuous functions to be de-
termined. The value Fk(1) can be calculated from the 
boundary condition (12), so we will have: 

2

1

(1 ) (1)cos .k k
k

A F           (14)  

By multiplying both parts of equation (14) by cos n  
and integrating in the interval (–1; 1) we get: 

1
2

1
1

1 1

(1 )cos

(1) cos cos .

n

k k n
k

A d

F d

             

(15)

  

Using the orthogonality property of the function 
{cos n }, i. e. 

1

1

0,
cos cos ,

1,
k n

k n
k n

d  

and calculating the integral value on the left side of the 
equation (15): 

1 1
2

3
1

4( 1)(1 )cos
n

n
k

A d  

we can get 

3

1141
k

k

kk CF
 
,
 

where 
2

12kk  are the eigenvalues, the roots of 

the eigenfunctions: cos k =0 . 
The first equation of system (10), taking into account 

(13), will be rewritten in the form: 

1 1
2

2

1
2

2

1

( )cos ( )cos

( )cos

( )cos ( ).

k k k k
k k

k k k
k

k k k
k

F x W x

a F x
x

a W x xC x
x

  

(16)

  

We can expand the function C'(x) in a series as eigen-
functions:  

1

( ) ( )cos ,k k
k

C x A x  

where  
1 1

10

( 1)( ) ( )cos ( ).
k

k k
k k

A x C x d C x     (17)  

From equations (16), taking into account (17), we can find: 
2 2

2 2 2

( ) ( ) ( ) ( ) ( ) ,

( ).

k k
k k k

k k

F x F x W x W x xA x
x x

a

 

We choose an arbitrary function Wk(x) in a way, to 
satisfy the conditions:  

xxAxW
x

xW kk
k

k

2

 
,         (18) 

 

0
2

xF
x

xF k .                      (19)  

Solving equation (18), we get: 

 xBxxW kk
k
2

,                         (20) 
where Bk(x) is the arbitrary constant to be determined. 

Solving equations (20) and  together, we obtain: 
B'k(x)=–x k

2+1Ak(x), whence 

dttCtxB
ь

к

к

k
k

1

1
1

21 .                (21)  

Solving equations (19), we get: 

 
2
kxCxF kk .                               (22) 

Substituting the value of the functions Bk(x) and Аk(x) 
from equations (21) and (22) into (13) we will have: 

2

2 2

2 2

1

1
1

1 1

1
1

1 1

( , ) cos

( 1) ( ) cos

( 1) ( ) cos .

k

k k

k k

k k
k

xk

k
k k

xk

k k
k k

u x AC x

x x t C t dt
x

AC t C t dt x

   

(23)

 

Substituting the value u(x, ) from (23) into the sec-
ond equation of system (10) for determining the V(x, ) 
function, we get the equation: 

2 2

2 2

1
1

1 1

1
1

1 1

( , )

( 1) ( ) cos

( 1) ( ) cos .

k k

k k

xk

k k
k k

xk

k k
k k

V x

x AC t C t dt x
x

AC t C t dt x

 

After simple transformations, the last equation will 
take the form: 
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2

2
2

1 1

3
2

2
1 1

2
1

( , )

4 ( 1) ( 1)

( 1) cos .
( ) ( )

1

k

k
k

k k

k k
k kx

k

k

V x

A

x
xt C t dt C t

 

We choose an arbitrary function C(x) so that to s
 atisfy the condition:  

x

к

xCxdttCt
k

k

1
2

2
1

1

2
2

=0 .               (24) 

Denoting t k
2+1C'(t)=y(x) the last equation is trans-

formed into the form: 

.0
11

2

x

к

xyxdtty  

Differentiating it with x, we get: 

022 xyxyx к  or 
x

xy
dx
d к 2

ln
2

,  

from where y(x)=x k
2–2. 

Taking in mind the value y(x) for C'(x) the equation is 
defined as: 

3xxC , 

where 

2

2

2
11

x
xCxC .                       (25) 

Taking into account conditions (24), the equation for 
determining the function v(x, ) will take the form: 

2
1

2
3

1

( , ) 4 ( 1)( 1) cos .k

k

k k
k k

V x Ax  

Integrating this equation in the interval (–1; ) and 
keeping in mind the boundary conditions (11), it can be 
expressed as: 

2
1 2

1
4

1

4 ( 1) ( 1)( , ) [sin ( 1) ],k

k
kk

k
k k

AV x x  

when –1≤ ≤0,               (26) 
2

1 2

4
1

4 ( 1) ( 1)( , ) [( 1) sin ],k

k
kk

k k

AV x x k  

when 0≤ ≤1.              (27)  
Substituting the eigenvalues into equations (26) and 

(27), we finally get: 
2

2
1

4
1

64 ( 1)( , ) [( 1) sin( 0.5) 1],
(2 1)

k kk

k

AV x x k
k

 

when –1≤ ≤0, 
2

2
1

4
1

64 ( 1)( , ) 1 [( 1) sin( 0.5) ],
(2 1)

k kk

k

AV x x k
k

  

when 0≤ ≤1. 
For the function u(x, ), taking into account the values 

Ck and C'(x), the formula will be expressed as: 

2
2

11 1

3 2
1

4 ( 1) ( 1) 1( , ) cos .
1

k
k

k k

k
k k k k

A xu x x  

Taking into account the value of the eigenvalues 

2
12kk , we finally get: 

2 21

3 3 2
1

1

4( , )
( 0.5) ( 0.5)( 1)

( 1) cos[( 0.5) ] .

k k

k k

k

Ax x xu x
k k

k

 

(28)  
The resulting solution satisfies all boundary conditions. 
We can calculate the patterns of pressure change from 

(7), (25) and (28): 

2 21

3 3 2
10 0

2
1

2

( , )

2 4
( 0.5) ( 0.5)( 1)

1( 1) cos[( 0.5) ] (1) .
2

k k

k k

k

p x

Ax x x
U r k k

xk C
x

    

(29) 

The value of constant integration is calculated from 
the initial condition, at 0,,1 pxpx , and we get: 

1
3

1

00
0

1420,11
k k

kA
rU

pC  .         (30) 

As 

A
k

AA
k

k

k k

k

1
3

1

3
1

3

1

12
13214 , 

From (30) we can get: 

00
0

20,11
rU
ApC .       (31)  

Substituting the value 1C  from (31) into (29) we 
finally get the pattern of pressure change along the length 
of the flat diffuser: 

2 21

3 3 2
1

0 0 1

2

2

( , ) (1.0)

4
2 ( 0.5) ( 0.5)( 1)

( 1) cos[( 0.5) ]

1.
2

k k

k k

k

p x p

x x xA
k k

U r
k

x
x

 

On the wall of the stationary channel, due to the ve-
locity gradient and viscosity, shear stresses are formed, 
which is determined by the formula [4]:  

rrr
r

r
1

,
.            (32) 

In view of the negligible transverse velocity compo-
nent , compared to the derivative of r tangential stress 
on the angle of , the shear stress on the diffuser (32) 
wall will be determined by the formula: 

r

r
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or dimensionless form: 

100

1 u
xrU

.      (33)  

Substituting the expression for the radial velocity (28) 
into (33) we obtain the formula for determining the di-
mensionless shear stress on the diffuser wall: 

1
22

1

2

12

00 5.0
4

1

22

k
Axxx

rU k k

kk

 

1
1 5.01 kSink

.         (34)  

Based on the expression obtained, we get the place of 
flow separation from the diffuser wall in accordance with 
the condition, that separation occurs at the place, where 
the shear stresses become zero: 

01 .
 

From the last equation, taking into account (34), for 
determination of the unknown parameter, we obtain: 

0
5.0

4
1 22

1

2

12 22

k
Axxx kk

k

. 

Discussion of the results 
Based on the solutions obtained, we study the nature 

of the flow features in a flat diffuser. From the obtained 
equations for the distribution of velocities u(x, ) and 
V(x, ) it follows that for x→∞, u(∞, )→0  and 
V(x, )→0. These conditions are fully consistent with the 
condition of constant flow. 

The graphs were plotted in order to visualize the pat-
terns of changes in the radial velocity u(x, ) along the 
transverse section and along the length of a flat diffuser, 
as well as the shear stress on the wall of a fixed channel, 
depending on the opening angle =20  10 , 5  and the 
Reynolds number Re=20, 40, 60, 80, 100, 110. Fig. 2–5 
show the indicated graphs for cases =20  and 5  at 
Re=60 and Re=70. 

Numerical calculations were carried out at a constant 
value: A=0.7. 

The separation point is a special point for the shear 
stress function (32) where 

 

012
k  or Re2

k .   (35) 
Under condition (35), the value  is undefined. The 

indeterminacy is found according to the L'Hopital's rule 
[6]. As a result, it turns out: 

01Re8.2
1

lim 1

1
2

1

2

12

1

22

2

k

k kk

kk

k

xxx , 

whence follows the condition 

0ln
Re
8.21 xx  or 

Re
8.2expx .      (36)  

 

 
A 
 

 
B 

Fig. 2.  Graphs of changes in the radial velocity u(x, ) in a 
flat diffuser at an opening angle =20  and the 
Reynolds number Re=60. A) along the cross-section 
at 1. x=1.03, 2. x=1.05, 3. x=1.2, 4. x=1.5, 5. x=2.0, 
6. x=3.0; B) lengthwise at 1. =0.1, 2. =0.3, 
3. =0.51, 4. =0.7, 5. =0.9 

Рис. 2.  Графики изменения радиальной скорости u(x, ) 
в плоском диффузорe при угле раствора =20  и 
числе Рейнольдса Re=60: А) по попeречному се-
чению при 1. x=1.03, 2. x=1.05, 3. x=1.2, 4. x=1.5, 
5. x=2.0, 6. x=3.0; B) по длине при 1. =0.1, 2. 

=0.3, 3. =0.51, 4. =0.7, 5. =0.9 

 

 
Fig. 3.  Graph of changes in shear stresses in a flat diffuser 

at =20  and Reynolds numbers 1. Re=10, 
2. Re=20, 3. Re=30, 4. Re=40 

Рис. 3.  График изменения касательных напряжений в 
плоском диффузоре при =20  и числах Рейноль-
дса 1. Re=10, 2. Re=20, 3. Re=30, 4. Re=40 
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А 

 
B 

Fig. 4.  Graphs of changes in the radial velocity u(x, ) in a 
flat diffuser at an opening angle =5  and the 
Reynolds number Re=60: A) along the cross-section 
at 1. x=1.03, 2. x=1.05, 3. x=1.2, 4. x=1.5, 5. x=2.0, 
6. x=3.0; B) lengthwise at 1. =0.1, 2. =0.3, 
3. =0.51, 4. =0.7, 5. =0.9 

Рис. 4.  Графики изменения радиальной скорости u(x, ) 
в плоском диффузорe при угле раствора =5  и 
числе Рейнольдса Re=60: А) по попeречному се-
чению при 1. x=1.03, 2. x=1.05, 3. x=1.2, 4. x=1.5, 
5. x=2.0, 6. x=3.0; B) по длине при 1. =0.1, 2. 

=0.3, 3. =0.51, 4. =0.7, 5. =0.9 

 

 
Fig. 5.  Graph of changes in shear stresses in a flat diffuser 

at =5  and Reynolds numbers 1. Re=10, 2. Re=20, 
3. Re=30, 4. Re=40, 5. Re=50, 6. Re=60 

Рис. 5.  График изменения касательных напряжений в 
плоском диффузоре при =5  и числах Рейнольд-
са 1. Re=10, 2. Re=20, 3. Re=30, 4. Re=40, 5. 
Re=50, 6. Re=60 

For a visual representation of the place of separation, a 
graph of the function x from Re (36) is shown in Fig. 6. 

 
Fig. 6.  Function graph x from Re 
Рис. 6.  График функци x от Re  

The analysis of the numerical calculation results are 
presented in the form of graphs (Fig. 2, B; 3; 4, B; 5; 6) 
showed that the coordinates of the separation points were 
determined depending on the opening angle and Reynolds 
number. The viscous liquid flow to the separating point is 
considered stationary and strictly flat-parallel and, ac-
cording to the results of calculations, the hydrodynamic 
parameters are strictly symmetrical (Fig. 2, 4). The nature 
of the flow is disturbed after the separation point, and the 
obtained solutions do not provide accurate results. How-
ever, they can be used for qualitative analysis. At the sep-
aration points, the sign of the shear stress and radial ve-
locity change. However, they can be used for qualitative 
analysis. At the separation points, the sign of the shear 
stress and radial velocity change. 

It can be seen from the graph that the coordinates of 
the separation point exactly match the data determined 
from the graphs. In addition, it can be seen that the condi-
tions for continuous flow in a flat diffuser at small open-
ing angles are possible at significantly higher Reynolds 
numbers. As a result, the single-mode stationary flow is 
sharply reduced (Fig. 2, 3), as a result of which the sta-
tionary regime is disturbed. Multimode flow starts, ac-
companied by various pulsation processes and unstable 
operation of the diffuser, where the obtained solutions are 
invalid. The main goal of diffuser design is to ensure a 
steady mode of operation, which can be achieved by 
choosing the optimum dimensions. 

Conclusion 
Based on the study results, the following conclusions 

were formulated: 
 the features of the viscous fluid flow in flat diffusers 

are determined; 
 the method for solving a boundary value problem was 

developed, and formulas for calculating radial and 
transverse velocities, shear stresses on the wall of a 
fixed channel, and pressure along the length of the 
diffuser were obtained; 

 the graphs of changes in the flow's hydrodynamic pa-
rameters and shear stress on the channel wall were 
designed; 

 the coordinate of the flow separation point was de-
termined using the opening angle and the Reynolds 
number, which is the main parameter of the diffuser. 
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The obtained solutions of the approximating Navier–
Stokes equations for identifying the patterns of changes in 
hydrodynamic parameters in a flat channel, make it pos-
sible to identify the main point of ongoing processes and 
determine the bifurcation point coordinates from the dif-
fuser opening angle and the Reynolds number. The criti-
cal values of the Reynolds number are also determined in 
case the regime transfers from symmetrical to asymmet-
rical. The pressure and shear stress regularities of varia-

tions on the fixed channel's wall are found along the 
length of the flat diffuser, and the coordinates of the sepa-
ration point are defined, as it is shown on the graphs. 

Based on the results of the studies obtained, it is pos-
sible to correctly design a flat diffuser, to choose the 
opening angle and its length according to the condition of 
continuous movement. Flat diffusers are the main part in 
many technological equipment for exploration, mining, 
transportation and processing of geo-resources. 
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Актуальность. В различных механизмах и машинах широко используются диффузоры, либо в виде насадки, либо в качестве 
составной части. В связи с этим исследование движения вязкой жидкости в диффузорах направлено на выявление законо-
мерностей изменения гидродинамических параметров потока, что позволит лучше понять характер движения в зависимо-
сти от числа Рейнольдса. По результатам анализов исследования выявятся условия по правильному конструированию узла 
механизма, обеспечивающего его надежную и долговечную работу. 
Целью настоящей работы является исследование закономерностей изменения гидродинамических параметров вязкой не-
сжимаемой жидкости в плоском диффузоре и определение параметров потока в фиксированном сечении. 
Объекты: плоский диффузор, в котором двигается вязкая несжимаемая жидкость. При этом выявление закономерностей 
изменения гидродинамических параметров потока имеет определяющее значение при выборе конструктивных размеров ап-
паратов и механизмов, основной частью которых является плоский диффузор.  
Методы. В основу исследования по выявлению закономерностей изменения гидродинамических парамеров потока в плоском 
диффузоре заложены фундаментальные нелинейные дифференциальные уравнения механики вязкой жидкости, которые в 
общем случае не поддаются точному математическому решению. С целью интегрирования в нелинейных дифференциаль-
ных уравнениях, ввиду малости, отброшены нелинейно-конвективные члены, а также упрощены инерционные члены. Такое 
упрощение оправдано, если скорости весьма малы или если динамический коэффициент вязкости жидкости весьма велик. 
Разработан метод решения краевой задачи, получены закономерности изменения параметров потока. По выведенным зако-
номерностям построены графики изменения скорости, давления и касательных напряжений на стенке неподвижного канала 
и определены координаты точки отрыва.  
Результаты. В зависимости от угла раствора диффузора и числа Рейнольдса дано общее решение аппроксимирующих 
уравнений Навье–Стокса. В соответствии с характером движения установлены граничные условия задачи и сформулирова-
на краевая задача. Разработан метод интегрирования краевой задачи, получены закономерности изменения скоростей по 
длине диффузора при параболическом распределении скоростей во входном сечении. Построены графики изменения радиаль-
ных скоростей по длине и при фиксированном значении угла раствора, получена картина течения и переход одномодового 
течения к многомодовым режимам. При фиксированном значении угла раствора и числа Рейнольдса выведены условия отры-
ва потока от неподвижной стенки, при которых скорость потока меняет знак.  

 
Ключевые слова:  
диффузор, профиль скорости, распределение давления, предел устойчивости, вязкая жидкость, течение жидкости. 
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