Т. 325, № 2 : Математика, физика и механика

О задаче сопряжения для гиперболического и псевдопараболического уравнений четвертого порядка

Актуальность работы обусловлена доказательством корректности задачи сопряжения для линейного гиперболического и псевдопараболического уравнений четвертого порядка с младшими членами. Цель работы: доказательство существования и единственности решения задачи сопряжения для гиперболического и псевдопараболического уравнений четвертого порядка, когда условия сопряжения задаются на не характеристической линии Методы исследования: Методом функции Римана и интегральных уравнений разрешимость задачи эквивалентным образом сводится к решению системы интегральных уравнений Фредгольма второго рода, решение которого устанавливается методом последовательных приближений. Результаты: В работе исследована разрешимость задачи сопряжения для гиперболического и псевдопараболического уравнений четвертого порядка с младшими переменными коэффициентами. Установлено, что когда порядок уравнения равен четырем и условия сопряжения задаются на не характеристической линии, то для корректности задачи, вместо обычных двух условий склеивания, необходимо задание четырех условий склеивания. Особенностью данной задачи является то, что условия сопряжения задаются не на координатной оси, а на биссектрисе первой четверти плоскости. С целью определения следа искомой функции и ее производных второго, третьего, четвертого порядков на линии изменения типа уравнений, а также для получения явного представления решения, построены функции Римана для линейного гиперболического и псевдопараболического уравнений четвертого порядка, определяемые как решения соответствующих сопряженных задач Гурса. Изучены некоторые свойства функции Римана, и получены представления решения задачи Коши для линейного гиперболического и псевдопараболического уравнений четвертого порядка с переменными коэффициентами. Разрешимость задачи сопряжения установлена эквивалентным сведением ее к разрешимости системы четырех линейных интегральных уравнений Фредгольма второго рода. Доказаны теоремы существования и единственности решений задачи сопряжения для гиперболического и псевдопараболического уравнений четвертого порядка.

Ключевые слова:

электронный ресурс, задачи, сопряжения, гиперболические уравнения, псевдопараболические уравнения, краевые условия, начальные условия, функции Римана, уравнения Вольтерра, уравнения Фредгольма,

Авторы:

Скачать PDF