Т. 324, № 2 : Математика и механика. Физика

Асимптотика решения сингулярно возмущенной задачи с периодическими точками поворота в комплексной плоскости

При исследовании любой динамической системы особый интерес представляют критические значения ее параметров, при которых происходят качественные изменения свойств стационарных или квазистационарных режимов, т. е. наблюдаются бифуркации. Один из видов бифуркации, при которой нарушается условие асимптотической устойчивости и выполняется предельный переход, появляется в системах, встречающихся в физике лазеров, химической кинетике, пластической деформации, биофизике, в модифицированной системе Циглера, и при моделировании верховых лесных пожаров, безопасных процессов горения с максимальной температурой. В работе, применяя метод стационарной фазы, построена асимптотика решения системы сингулярно возмущенных обыкновенных дифференциальных уравнений с периодическими точками поворота в комплексной плоскости при нарушении условия асимптотической устойчивости. Полученная асимптотическая оценка для решения задачи является неулучшаемой.

Ключевые слова:

электронный ресурс, асимптотика, сингулярное возмущение, точка поворота, асимптотическая устойчивость, линия Стокса, обыкновенные дифференциальные уравнения,

Авторы:

Скачать PDF