- Абаев Ю.К. Хирургическая повязка. Минск: Беларусь, 2005. – 150 с.
- Кучеров С.В. Радиационная стерилизация // Радиационная обработка материалов. 2012. URL: http://www.zao-intech.ru (дата обращения: 22.03.2012).
- Быков Н.М., Губанов В.П., Гунин А.В. и др. Сильноточный импульсно-периодический ускоритель электронов с высокой стабильностью параметров электронного пучка // Приборы и техника эксперимента. – 1989. – № 1. – С. 37–39.
- Ельчанинов А.С., Загулов Ф.Я., Коровин С.Д. и др. Ускорители сильноточных электронных пучков с высокой частотой следования импульсов // В сб.: Сильноточные импульсные электронные пучки в технологии / под ред. Г.А. Месяца. – Новосибирск: Наука, 1983. – 520 с.
- Коровин С.Д. Трансформатор Тесла в сильноточных импульсно-периодических ускорителях // Препринт № 47, ТФ СО АН СССР. – Томск, 1988. – 38 с.
- Коровин С.Д., Ростов В.В. Сильноточные наносекундные импульсно-периодические ускорители электронов на основе трансформатора Тесла // Известия вузов. Сер. Физика. 1996. № 12. С. 21–30.
- Mesyats G.A., Korovin S.D., Gunin A.V., et al. Repetitively pulsed high-current accelerators with transformer charging of forming lines // Laser and Particle Beams. – 2003. – V. 21. – P. 197–200.
- Филатов В.Н., Рыльцев В.В. Биологически активные текстильные материалы. Т. 1. Терапевтические системы «дальцекс-трипсин». – М.: Информэлектро, 2002. – 248 с.

Поступила 16.03.2012 г.

УДК 621.039.342.001.53

ПОЛУЧЕНИЕ ВЫСОКООБОГАЩЕННОГО ¹³С В КАСКАДЕ ГАЗОВЫХ ЦЕНТРИФУГ С ИСПОЛЬЗОВАНИЕМ ИЗОТОПНОГО ОБМЕНА В ДИОКСИДЕ УГЛЕРОДА

А.А. Орлов, В.П. Совач*

Томский политехнический университет *ОАО «ПО Электрохимический завод», г. Зеленогорск E-mail: orlovaa@tpu.ru

Рассмотрены возможные схемы протекания реакции изотопного обмена в диоксиде углерода в реакторе изотопного обмена. Показаны изменения молекулярного состава диоксида углерода и распределения изотопа ¹³С на входе и выходе из реактора изотопного обмена. Исследована зависимость эффективности работы каскада газовых центрифуг по получению высокообогащенного ¹³С от места установки в нем реактора изотопного обмена при различных величинах степени изотопного обмена. Показано, что функция эффективности работы каскада от места установки в нем реактора изотопного обмена представляет собой унимодальную выпуклую линию, которая имеет максимум. Определены места оптимального расположения одного и двух реакторов изотопного обмена в каскаде газовых центрифуг и величины степени изотопного обмена в них, при которых можно обеспечить обогащение по ¹³С более 99 %.

Ключевые слова:

Каскад газовых центрифуг; изотопный обмен; диоксид углерода; реактор изотопного обмена.

Key words:

Gas centrifuge cascade; isotope exchange; carbon dioxide; isotope exchange reactor.

Введение

При разделении изотопов центрифужным методом приходится использовать рабочие вещества, представляющие собой химические соединения нескольких полиизотопных элементов. В этом случае говорят о «изотопном перекрытии», то есть целевой изотоп одновременно находится в нескольких различных массовых компонентах, которые состоят из изобарных молекул с различным набором изотопов.

Эффективность центробежного метода разделения зависит от разности молекулярных масс, следовательно, молекулы, состоящие из различных изотопов элементов и имеющие одинаковую молярную массу, будут вести себя в поле действия центробежных сил одинаково.

Изотопные перекрытия ограничивают максимальное обогащение целевым изотопом в разделительных каскадах некоторой предельной величиной. Это ограничение можно преодолеть несколькими способами [1], одним из которых является использование совокупности реакций изотопного обмена, в результате которых рабочее вещество будет стремиться перейти в равновесное состояние.

Технология получения высокообогащенного изотопа ¹³С в ОАО «ПО ЭХЗ» описана в работе [2]. Она основана на изобретении [3]. Изотопный обмен можно проводить между разделительными этапами и непосредственно в процессе разделения. Во втором случае в разделительный каскад устанавливаются специальные устройства — реакторы изотопного обмена (РИО), что приводит к уменьшению числа разделительных этапов. Описание РИО приведено в работах [4, 5].

Данная статья посвящена расчетно-теоретическим исследованиям по определению необходимого числа РИО с заданными технологическими параметрами, и их оптимального расположения в каскаде газовых центрифуг (ГЦ) при получении диоксида углерода обогащенного (более 99 %) изотопом ¹³С.

Теоретическая часть

Для синтеза диоксида углерода предназначенного для обогащения изотопом ¹³С используется кислород с природным содержанием изотопов и углерод, предварительно обогащенный изотопом ¹³С до 15...30 % [2, 3, 6]. Формулы определения равновесного изотопно-молекулярного состава диоксида углерода и содержания в нем ¹²С, ¹³С приведены в табл. 1.

Таблица 1. Формулы определения равновесного изотопномолекулярного состава диоксида углерода и содержания в нем ¹²С, ¹³С

Молярная	Изотопный	Содержание в CO ₂	
масса CO ₂ , <i>M</i> , кг/моль	состав моле- кул СО ₂	¹² C	¹³ C
0,044	¹² C ¹⁶ O ¹⁶ O	¹² C ¹⁶ O ¹⁶ O/ <i>M</i>	0
0,045	(¹² C ¹⁶ O ¹⁷ O)·2+ ¹³ C ¹⁶ O ¹⁶ O	(¹² C ¹⁶ O ¹⁷ O)·2/ <i>M</i>	¹³ C ¹⁶ O ¹⁶ O/ <i>M</i>
0,046	(¹² C ¹⁶ O ¹⁸ O)·2+ ¹² C ¹⁷ O ¹⁷ O+ (¹³ C ¹⁶ O ¹⁷ O)·2	(¹² C ¹⁶ O ¹⁸ O)·2+ ¹² C ¹⁷ O ¹⁷ O/ <i>M</i>	(¹³ C ¹⁶ O ¹⁷ O)·2/ <i>M</i>
0,047	$({}^{12}C{}^{17}O{}^{18}O)\cdot 2+$ $({}^{13}C{}^{16}O{}^{18}O)\cdot 2+$ ${}^{13}C{}^{17}O{}^{17}O$	(¹² C ¹⁷ O ¹⁸ O)·2/ <i>M</i>	(¹³ C ¹⁶ O ¹⁸ O)·2+ ¹³ C ¹⁷ O ¹⁷ O/ <i>M</i>
0,048	¹² C ¹⁸ O ¹⁸ O+ (¹³ C ¹⁷ O ¹⁸ O)·2	¹² C ¹⁸ O ¹⁸ O/ <i>M</i>	(¹³ C ¹⁷ O ¹⁸ O)·2/ <i>M</i>
0,049	¹³ C ¹⁸ O ¹⁸ O	0	¹³ C ¹⁸ O ¹⁸ O/ <i>M</i>

Изотопное перекрытие в диоксиде углерода обусловлено наличием изотопов углерода ¹²C, ¹³C и изотопов кислорода ¹⁶O, ¹⁷O, ¹⁸O.

Равновесный изотопно-молекулярный состав диоксида углерода, используемый для центрифужного разделения приведен в табл. 2. Содержание ¹³С равно 15 %.

Таблица 2. Изотопно-молекулярный состав диоксида углерода

Молярная мас- са CO ₂ , <i>M</i> ,	Іолярная мас- Молекулярная са CO ₂ , <i>M</i> , концентрация	Концентрация изотопов углерода в молекулах CO ₂ , %	
кг/моль	CO ₂ , %	¹² C	¹³ C
0,044	84,5908	100,0000	0
0,045	14,9905	0,4186	99,5814
0,046	0,3570	96,8987	3,1013
0,047	0,0612	0,2097	99,7903
0,048	0,0004	93,9837	6,0163
0,049	0,0001	0	100,0000

Если процесс разделения проводится в каскаде газовых центрифуг без использования РИО, то диоксид углерода обогащается изотопом ¹³С до 95...97 %, затем он переводится в равновесное состояние с помощью РИО и организуется еще один разделительный этап. В табл. 3 приведены результаты теоретического исследования процесса изотопного обмена. На вход РИО подается неравновесный диоксид углерода, полученный в процессе работы разделительного каскада, на выходе из РИО имеем равновесный состав диоксида углерода.

Таблица 3. Молекулярный состав диоксида углерода и содержание ^вС на входе и выходе из РИО

Молярная масса	Молекулярный состав СО ₂ , %		Содержание ¹³ С, %	
CO2, 101, KI / MOJIB	Вход	Выход	Вход	Выход
0,044	0,3131	3,3350	0,0000	0,0000
0,045	96,3675	92,9890	99,5814	99,9827
0,046	2,8304	0,5766	3,1013	81,2866
0,047	0,4856	3,0654	99,7903	99,9913
0,048	0,0030	0,0086	6,0163	89,6792
0,049	0,0005	0,0252	100,0000	100,0000

Анализируя приведенные данные можно предположить, что наиболее неравновесными изобарными являются молекулы диоксида углерода с молярными массами 0,045 и 0,046. При взаимодействии молекул CO₂ этих молярных масс происходит их преобразование в молекулы CO₂ других масс по следующим реакциям:

 $(C^{12}O^{16}O^{17^*}) + (C^{13}O^{16^*}O^{17}) = (C^{12}O^{16}O^{16}) + (C^{13}O^{17}O^{17})$

М	0,045	0,046	0,044	0,047

 $(C^{12*}O^{17}O^{17}) + (C^{13*}O^{16}O^{16}) = (C^{12}O^{16}O^{16}) + (C^{13}O^{17}O^{17})$ M 0.046 0.045 0.044 0.047

 $(C^{12}O^{16}O^{18*}) + (C^{13}O^{16}O^{16*}) = (C^{12}O^{16}O^{16}) + (C^{13}O^{16}O^{18})$

M 0,046 0,045 0,044 0,047

Безусловно, процесс изотопного выравнивания не ограничивается приведенными выше реакциями. Существует и множество других реакций, возможно более сложных, в результате которых образуются молекулы CO_2 с молярными массами 0,047 и 0,048.

В табл. 3 показано, что в результате реакции и зотопного обмена происходит не только изменение молярных масс, но и увеличение концентрации ¹³С в молекулах более тяжелых масс. Например, до РИО содержание изотопа ¹³С в молекулах с молярной массой 0,046 составляло 3,1 %, а после РИО выросло до 81,3 %. Как видим, уменьшается влияние изотопного перекрытия на процесс разделения.

При установке РИО непосредственно в разделительный каскад можно получать диоксид углерода, обогащенный изотопом ¹³С более 99 % за один этап разделения.

Методика расчета

Основная сложность расчета каскада ГЦ с учетом наличия в нем РИО заключается в том, что в каскаде не соблюдается уравнение баланса молекулярных компонент и резко возрастает информационный массив, характеризующий разделительную ступень. В основном это обусловлено тем, что на каждой ступени каскада формируется свое, отличное от других ступеней, распределение изотопов по молярным массам. На рис. 1 показана схема разделительной ступени с установленным РИО на трассе тяжелой фракции (отвала).

На питание ступени подается поток величиной *GF* с концентрациями молекулярных компонент CF_i , i=1,...,n, где n – число молекулярных компонент, для диоксида углерода их шесть (М=0,044, 0,045, 0,046, 0,047, 0,048, 0,049). Из ступени выходят два потока: отбор величиной GP с концентрацией молекулярных компонент CP_i , i=1,...,n и отвал величиной GW с концентрацией молекулярных компонент CW_i , *i*=1,...,*n*. Содержание изотопов кислорода и углерода в питании характеризуется матрицей DF_{i,j}, где *i* – номер молекулярной компоненты; j – номер изотопа, для диоксида углерода это ¹²C, ¹³C, ¹⁶O, ¹⁷O, ¹⁸O, в отборе – DP_{ij} , в отвале – DW_{i.i}. Поток отвала с разделительной ступени поступает на вход РИО. На выходе РИО имеем поток величиной GW1, с концентрациями молекулярных компонент $CW1_i$, i=1,...,n и содержанием изотопов кислорода и углерода $DW_{1_{ij}}$.

Расчет разделительной ступени проводится традиционным способом [7, 8].

Учитывая степень изотопного обмена β , определяются результирующие молекулярные составляющие и матрица содержания спектра изотопов в диоксиде углерода на выходе из РИО.

Рис. 1. Схема разделительной ступени с установленным РИО на трассе тяжелой фракции

Коэффициент изотопного обмена β определяется экспериментальным путем [9] и рассчитывается по формуле:

$$\beta = \sqrt{\frac{\sum_{i=1}^{n} (CW1_i - CW_i)^2}{\sum_{j=1}^{n} (CR_i - CW_i)^2}},$$

где *CR_i* – равновесные концентрации молекулярных компонент.

Результаты расчетно-теоретических исследований

Сначала были проведены расчеты каскада ГЦ с одним РИО, установленным на разных ступенях каскада газовых центрифуг при степени изотопного обмена β =100, 80, 60, 40 %. Расчеты проводились при постоянных величинах внешних потоков (потоке питания 5·10⁻⁶ кг/с и потоке тяжелой фракции (отвала) 6,3·10⁻⁷ кг/с) и технологических параметрах разделительных ступеней. Критерием эффективности размещения РИО служила концентрация ¹³С в целевом потоке GW1. Результаты расчетов приведены на рис. 2.

Рис. 2. Зависимость концентрации ¹³С от расположения РИО в каскаде газовых центрифуг

Таблица 4. Результаты определения месторасположения двух РИО в каскаде ГЦ при β=50 и 40 %

	№ ступени установки РИО		Концентрация ¹³ С на выходе			
	I	II	каскада ГЦ, %			
		<i>β=</i> 50	%			
	1	15	99,0422			
	5	15	99,0730			
	10	15	99,0710			
	15	15	99,0023			
	20	15	99,0959			
	25	15	99,1261			
	30	15	99,1283			
ſ	35	15	99,1100			
ſ	28	15	99,1303			
	29	15	99,1297			
Ī	28	13	99,1415			
Ī	28	11	99,1482			
ſ	28	9	99,1499			
Ī	28	7	99,1456			
Ì	28	8	99,1485			
Ī	27	9	99,1507			
Ī	26	9	99,1507			
Ī	27	10	99,1501			
Ī		β=40	%			
Ī	10	10	98,7049			
Ī	10	30	99,0889			
ſ	10	25	99,0970			
Ī	10	20	99,0793			
Ī	10	23	99,0935			
ſ	10	24	99,0958			
Ī	10	26	99,0973			
Ī	10	27	99,0966			
ſ	9	26	99,0992			
Ī	11	26	99,0941			
Ī	8	26	99,0995			
ſ	7	26	99,0982			
ſ	8	27	99,0985			
t	8	25	99,0996			
t	8	24	99,0987			
ſ	9	25	99,0991			
- 4						

Из приведенных расчетных данных видно, что функция эффективности работы каскада ГЦ от

расположения в нем одного РИО представляет собой унимодальную выпуклую линию, имеющую максимум. При степени изотопного обмена β меньше 80 % одного РИО недостаточно для эффективной работы каскада и получения обогащения по ¹³С выше 99 %. При β =100 % оптимальное расположение РИО в каскаде ГЦ приходится на 22 ступень, а при β =80 % – на 18 ступень.

На следующем этапе исследований были проведены расчеты с двумя РИО установленными в каскаде ГЦ.

При проведении расчетов фиксировалось местоположение одного РИО, и по методу Кифера-Вольвовица [10] находилось оптимальное местоположение второго РИО. Затем фиксировалось местоположение второго РИО и аналогично находилось оптимальное местоположение первого РИО. Данная процедура продолжалась до нахождения абсолютного оптимума. Критерием оптимизации служила величина концентрации целевого изотопа (¹³C).

Результаты расчетов приведены в табл. 4.

Из приведенных данных видно, что для эффективной работы разделительного каскада достаточно двух РИО, обеспечивающих степь изотопного обмена 40 %. Оптимальное место установки первого РИО в данном случае 8-ая ступень каскада ГЦ, второго РИО – 25 ступень.

СПИСОК ЛИТЕРАТУРЫ

- Сазыкин А.А. Некоторые проблемы разделения полиизотопных смесей кинетическими методами // Физико-химические процессы при селекции атомов и молекул: Сб. докл. III Всеросс. научн. конф. – Звенигород, 1998. – С. 103–110.
- Скорынин Г.М. Производство изотопически обогащенной продукции в отрасли: Центрифужная технология разделения стабильных изотопов на электрохимическом заводе // Физико-химические процессы при селекции атомов и молекул: Сб. докл. Х Междунар. научн. конф. – Звенигород, 2005. – С. 25–31.
- Способ разделения изотопов: пат. 251334 Рос. Федерация. № 251334/10; заявл. 03.12.85; опубл. 21.01.86, Бюл. № 4. – 3 с.
- Скорынин Г.М., Орлов А.А., Сенченко В.В. Исследование возможности проведения изотопного обмена в диоксиде углерода в каскаде газовых центрифуг // Известия Томского политехнического университета. – 2008. – Т. 313. – № 3. – С. 37–39.
- Центробежный способ получения высокообогащенного изотопа ¹³С и устройство для проведения реакций изотопного обме-

При β =50 % оптимальным является расположение первого РИО на 26 или 27 ступенях каскада ГЦ, а второго РИО – на 9 ступени.

Выводы

- Рассмотрены возможные схемы протекания реакции изотопного обмена в реакторе. Показаны изменения молекулярного состава диоксида углерода и распределения концентрации изотопа ¹³С на входе и выходе из реактора изотопного обмена.
- Исследована зависимость эффективности работы каскада газовых центрифуг по получению высокообогащенного ¹³С от места установки в нем реактора изотопного обмена при различных величинах степени изотопного обмена. Показано, что функция эффективности работы каскада от места установки в нем реактора изотопного обмена представляет собой унимодальную выпуклую линию, имеющую максимум.
- 3. Установлено, что для эффективной работы разделительного каскада газовых центрифуг (концентрация ¹³С на выходе из каскада выше 99 %) достаточно одного реактора изотопного обмена, работающего со степенью изотопного обмена 80 % или двух реакторов изотопного обмена, работающих со степенью изотопного обмена 40 %.

на в каскаде газовых центрифуг: пат. 2236895 Рос. Федерация. № 2236895/10; заявл. 10.04.02; опубл. 27.10.03, Бюл. № 30. – 3 с.

- Изотопы свойства, получение, применение / под ред. В.Ю. Баранова. – М.: ИздАТ, 2000. – С. 343–357.
- Кучеров Р.Я., Миненко В.П. К теории каскадов для разделения многокомпонентных изотопных смесей // Атомная энергия. – 1965. – Т. 19. – № 2. – С. 360.
- Палкин В.А., Сбитнев Н.А., Фролов Е.С. Расчет оптимальных параметров каскада для разделения многокомпонентных изотопных смесей // Атомная энергия. – 2002. – Т. 92. – № 2. – С. 130–133.
- Garza D.L., Garrett G.A., Murphy J.E. Multicomponent Isotope Separation in Cascades // Chem. Engng. Sci. – 1961. – V. 15. – P. 188–209.
- Уайлд Д.Дж. Методы поиска экстремума. М.: Наука, 1967. 268 с.

Поступила 24.04.2012 г.